Plant Vacuoles pp 191-198 | Cite as

Mg, ATP-Dependent H+ Transport in Vacuoles and Tonoplast Vesicles from Acer Pseudoplatanus Cells

  • Roberta Colombo
  • Raffaela Cerana
  • Piera Lado
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

Large evidence has accumulated about the existence of an ATPase associated with the vacuolar membrane, with well-defined characteristics different from those of the plasmalemma ATPase. The tonoplast ATPase is stimulated by Cl, insensitive to monovalent cations, inhibited by nitrate and unaffected by vanadate and has a broad pH optimum between pH 6 and 8 (Sze, 1984; Marrè and Ballarin-Denti, 1985).

Keywords

Corn EDTA Titration Adenosine Syringe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alibert, G., Carrasco, A., and Boudet, A. M., 1982, Changes in biochemical composition of vacuoles isolated from Acer pseudoplatanus L. during cell culture, Biochim. Biophys. Acta, 721: 22.Google Scholar
  2. Bennett, A. B., O’Neill, S. D., and Spanswick, R. M., 1984, H+-ATPase activity from storage tissue of Beta vulgaris. I. Identification and characterization of an anion-sensitive H+-ATPase, Plant Physiol., 74: 538.PubMedCrossRefGoogle Scholar
  3. Blumwald, E., and Poole, R. J., 1986, Kinetics of a Cat+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris L., Plant Physiol., 80: 727.PubMedCrossRefGoogle Scholar
  4. Chrestin, H., Gidrol, X., D’Auzac, J., Jacob, J. L., and Marin, B., 1985, Cooperation of a “Davies type” biochemical pH-stat and the tonoplastic bioosmotic pH-stat in the regulation of the cytosolic pH of Hevea latex, in: “Biochemistry and Function of Vacuolar Adenosine-Triphosphatase in Fungi and Plants”, B. P. Marin, ed., Springer-Verlag, Berlin, Heidelberg, New-York and Tokyo.Google Scholar
  5. Churchill, K. A., and Sze, H., 1983, Anion-sensitive, H+-pumping ATPase in membrane vesicles from oat roots, Plant Physiol., 71: 610.PubMedCrossRefGoogle Scholar
  6. Cocucci, M. C., and Marrè, E., 1984, Lysophosphatidylcholine-activated, vanadateinhibited, Mg2+-ATPase from radish microsomes, Biochim. Biophys. Acta, 771: 42.Google Scholar
  7. De Michelis, M. I., Pugliarello, M. C., and Rasi-Caldogno, F., 1983, Two distinct proton-translocating ATPases are present in membrane vesicles from radish seedlings, FEBS Letters, 162: 85.CrossRefGoogle Scholar
  8. Hager, A., and Biber, W., 1984, Functional and regulatory properties of H+ pumps at the tonoplast and plasma membranes of Zea mays coleoptiles, Z. Naturforsch., 39: 927.Google Scholar
  9. Jochem, P., Rona, J.-P., Smith, J. A. C., and Lüttge, U., 1984, Anion-sensitive ATPase activity and proton transport in isolated vacuoles of species of the CAM genus Kalanchöe, Physiol. Plant., 62: 410.Google Scholar
  10. John, P., and Miller, A. J., 1986, Electrogenic proton translocation by the adenosine- triphosphatase of intact vacuoles isolated from beet ( Beta vulgaris L.),J. Plant Physiol., 122: 1.Google Scholar
  11. Kurkd~ian, C., and Barbier-Brygoo, H., 1984, A hydrogen ion-selective liquid membrane microelectrode for measurement of the vacuolar pH of plant cells in suspension culture, Anal. Biochem., 132: 96.Google Scholar
  12. Leguay, J. J., and Guern, J., 1975, Quantitative effects of 2,4-dichlorophenoxyacetic acid on growth of suspension-cultured Acer pseudoplatanus cells, Plant Physiol., 56: 356.PubMedCrossRefGoogle Scholar
  13. Mandala, S., and Taiz, L., 1985, Proton transport in isolated vacuoles from corn coleoptiles, Plant Physiol., 78: 104.PubMedCrossRefGoogle Scholar
  14. Markwell, M. A. K., Haas, S. M., Bieber, L. L., and Tolbert, N. E., 1978, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem., 87: 206.Google Scholar
  15. Marrè, E., and Ballarin-Denti, A., 1985, The proton pumps of the plasmalemma and the tonoplast of higher plants, J. Bioenergetics Biomembranes, 17:1. Pal, M. K., and Schubert, M., 1963, Measurement of the stability of metachromatic compounds, J. Am. Chem. Soc., 84: 4384.Google Scholar
  16. Poole, R. J., Briskin, D.P. KK âtky, Z., and Johnstone, R. M., 1984, Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet, Plant Physiol., 74: 549.Google Scholar
  17. Schumaker, K. S., and Sze, H., 1985, A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots, Plant Physiol., 79: 1111.PubMedCrossRefGoogle Scholar
  18. Sze, H., 1984, H+-translocating ATPases of the plasma membrane and tonoplast of plant cells, Physiol. Plant., 61: 683.Google Scholar
  19. Thom, M., and Komor, E., 1985, Electrogenic proton translocation by the ATPase of sugarcane vacuoles, Plant Physiol., 77: 329.PubMedCrossRefGoogle Scholar
  20. Tognoli, L., 1985, Partial purification and characterization of an anion-activated ATPase from radish microsomes, Eur. J. Biochem., 146: 581.Google Scholar
  21. Wagner, G. J., and Lin, W., 1982, An active proton pump of intact vacuoles isolated from Tulipa petals, Biochim. Biophys. Acta, 689: 261.Google Scholar
  22. Weigel, H. J., and Weis, E., 1984, Determination of the proton concentration difference across the tonoplast membrane of isolated vacuoles by means of fluorescence, Plant Science Letters, 33: 163.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Roberta Colombo
    • 1
  • Raffaela Cerana
    • 1
  • Piera Lado
    • 1
  1. 1.Centro C. N. R. per la Biologia Cellulare e Moleculare delle Piante, Dipartimento di Biologia “Luigi Gorini”Università di MilanoMilanoItaly

Personalised recommendations