Advertisement

Plant Vacuoles pp 173-178 | Cite as

Structure and Function of the Subunits of the Vacuolar Membrane H+-ATPase of Saccharomyces Cerevisiae

  • Yasuhiro Anraku
  • Etsuko Uchida
  • Yoshinori Ohsumi
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

We have found a novel H+-translocating ATPase in vacuolar membranes of the yeast Saccharomyces cerevisiae (Kakinuma et al., 1981; Uchida et al., 1985). Using a preparation of right-side-out vacuolar membrane vesicles of high purity (Ohsumi and Anraku, 1981), we showed that the H+-ATPase generates an electrochemical potential difference of protons across the membrane of 180 mV, interior acid (Kakinuma et al., 1981), and that the enzyme serves as a common energy-donating system for seven n H+/amino-acid antiport systems and one H+/Ca2+ antiport, which all are present in the vacuolar membrane (Sato et al., 1984; Ohsumi and Anraku, 1983; Anraku, 1987).

Keywords

Saccharomyces Cerevisiae Catalytic Site Vacuolar Membrane Sodium Vanadate Thiocyanate Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anraku, Y., 1986, Active transport of amino-acids and calcium ions in fungal vacuoles, in: “Plant Vacuoles. Their Importance in Plant Cell Compartmentation and their Applications in Biotechnology”, B. Marin, ed., Plenum Publishing Corporation, New-York.Google Scholar
  2. Bowman, E. J., and Bowman, B. J., 1982, Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa J. Bacteriol., 151: 1326.PubMedGoogle Scholar
  3. Bowman, E. J., Mandala, S., Taiz, L., and Bowman, B. J., 1986, Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase from Zea mays, Proc. Natl. Acad. Sci. U.S.A., 83:48.PubMedCrossRefGoogle Scholar
  4. Cross, R. L., Grubmeyer, C., and Penefsky, H. S., 1982, Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase: Rate enhancements resulting from cooperative interactions between multiple catalytic sites, J. Biol. Chem., 257:12101.PubMedGoogle Scholar
  5. Ferguson, S. J., Lloyd, W. J., Lyons, M. H., and Radda, G. K., 1975, The mitochondria) ATPase: Evidence for a single essential tyrosine residue, Eur. J. Biochem., 54:117.PubMedCrossRefGoogle Scholar
  6. Grubmeyer, C., Cross, R. L., and Penefsky, P. S., 1982, Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase: Rate constants for elementary steps in catalysis at a single site, J. Biol. Chem., 257:12092.PubMedGoogle Scholar
  7. Kakinuma, Y., Ohsumi, Y., and Anraku, Y., 1981, Properties of H+-translocating adenosine-triphosphatase in vacuolar membranes of Saccharomyces cerevisiae J. Biol. Chem., 256:10859.PubMedGoogle Scholar
  8. Lichko, L. P., and Okorokov, L. A., 1985, What family of ATPase does the vacuolar H+-ATPase belong to ?, FEBS Letters, 187:349.PubMedCrossRefGoogle Scholar
  9. Manolson, M. F., Rea, P. A., and Poole, R. J., 1985, Identification of 3-0-(4-benzoyl)benzoyl-adenosine-5’-triphosphate-and N,N’-dicyclohexyl-carbodiimidebinding subunits of higher plant H+-translocating tonoplast ATPase, J. Biol. Chem., 260:12273.PubMedGoogle Scholar
  10. Marin, B. P., Preisser, J., and Komor, E., 1985, Solubilization and purification of the ATPase from the tonoplast of Hevea, Eur. J. Biochem., 151:131.PubMedCrossRefGoogle Scholar
  11. Ohsumi, Y., and Anraku, Y., 1981, Active transport of basic amino-acids driven by a proton-motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae, J. Biol. Chem., 256:2079.PubMedGoogle Scholar
  12. Ohsumi, Y., and Anraku, Y., 1983, Calcium transport driven by a proton-motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae, J. Biol. Chem., 258:5614.PubMedGoogle Scholar
  13. Penefsky, H. S., 1985, Reaction mechanism of the membrane-bound ATPase of submitochondrial particles from beet heart, J. Biol. Chem., 260:13728.PubMedGoogle Scholar
  14. Randall, S. K., and Sze, H., 1986, Properties of partially purified tonoplast H+-pum-ping ATPase from oat roots, J. Biol. Chem., 261:1364.PubMedGoogle Scholar
  15. Sato, T., Ohsumi, Y., and Anraku, Y., 1984, Substrate specificities of active transport systems for amino-acids in vacuolar membrane vesicles of Saccharomyces cerevisiae: Evidence of seven independent proton/amino-acid antiport systems, J. Biol. Chem., 259:11505.PubMedGoogle Scholar
  16. Tognoli, L., 1985, Partial purification and characterization of an anion activatedATPase from radish microsomes, Eur. J. Biochem., 146:581.PubMedCrossRefGoogle Scholar
  17. Uchida, E., Ohsumi, Y., and Anraku, Y., 1985, Purification and properties of H+translocating, Mgt+-adenosine-triphosphatase from vacuolar membranes of Saccharomyces cerevisiae, J. Biol. Chem., 260:1090.PubMedGoogle Scholar
  18. Uchida, E., Ohsumi, Y., and Anraku, Y., Characterization and function of a catalytic subunit a of H+-translocating adenosine-triphosphatase from vacuolar membranes of Saccharomyces cerevisiae: A study with 7-chloro-4-nitrobenzo2-oxa-1,3-diazole, J. Biol. Chem., submitted.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Yasuhiro Anraku
    • 1
  • Etsuko Uchida
    • 1
  • Yoshinori Ohsumi
    • 1
  1. 1.Department of Biology, Faculty of ScienceUniversity of TokyoHongo, TokyoJapan

Personalised recommendations