Advertisement

Plant Vacuoles pp 157-171 | Cite as

A Third-Category and a Fourth-Category H+-Phosphohydrolase at the Tonoplast

  • Philip A. Rea
  • Christopher J. Griffith
  • Dale Sanders
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

Most of the membranes of plant cells, including the plasma and Golgi membranes, are known to have H+ pumps but the tonoplast is the membrane which can be most easily isolated in the form of vesicles of low passive H+ conductance. Tonoplast vesicles constitute an experimental system in which the pH difference (∆pH) and electrical potential difference (∆ψ) between the two compartments separated by the vacuolar membrane can be measured and manipulated with comparative ease (Rea et al., 1986; Blumwald et al., 1987).

Keywords

Vacuolar Membrane Chromaffin Granule Inorganic Pyrophosphatase Tonoplast Vesicle Radiation Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, A. B., and Spanswick, R.M., 1984, H+-ATPase activity from storage tissue of Beta vulgaris. I. Identification and characterization of anion-sensitive H+-ATPase, Plant Physiol., 74: 538.PubMedCrossRefGoogle Scholar
  2. Bennett, A. B., and Spanswick, R. M., 1984, H+-ATPase activity from storage tissue of Beta vulgaris. II. H+/ATP stoichiometry of an anion-sensitive H+-ATPase, Plant Physiol., 74: 545.PubMedCrossRefGoogle Scholar
  3. Blumwald, E., and Poole, R. J., 1985, Nitrate storage and retrieval in Beta vulgaris: Effects of nitrate and chloride on proton gradients in tonoplast vesicles, Proc. Natl. Mad. Sci. U.S.A, 82: 3683.CrossRefGoogle Scholar
  4. Blumwald, E., and Poole, R. J., 1985, Nitrate storage and retrieval in Beta vulgaris: Effects of nitrate and chloride on proton gradients in tonoplast vesicles, Proc. Natl. Mad. Sci. U.S.A, 82: 3683.CrossRefGoogle Scholar
  5. Bowman, E. J., 1983, Comparison of the vacuolar membrane ATPase of Neurospora crassa with the mitochondrial and plasma membrane ATPases, J. Biol. Chem. 258: 15238.PubMedGoogle Scholar
  6. Bowman, E. J., and Bowman, B. J., 1982, Identification and properties of an ATPase in vacuolar membrane of Neurospora crassa, J. Bacteriol., 151: 1326.PubMedGoogle Scholar
  7. Bowman, E. J., and Bowman, B. J., 1985, The H translocating ATPase in vacuolar membranes of Neurospora crassa, in: “Biochemistry and Function of Vacuolar Adenosine-Triphosphatase in Fungi and Plants”, B. Marin, ed., Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo.Google Scholar
  8. Chanson, A., Fichmann, J., Spear, D., and Taiz, L., 1985, Pyrophosphate-driven proton transport by microsomal membranes of corn coleoptiles, Plant Physiol., 79: 159.PubMedCrossRefGoogle Scholar
  9. Churchill, K. A., and Sze, H., 1983, Anion-sensitive, H+-pumping ATPase in membrane vesicles from oat roots, Plant Physiol., 71: 610.PubMedCrossRefGoogle Scholar
  10. Churchill, K. A., and Sze, H., 1984, Anion-sensitive H+-pumping ATPase from oat roots: Direct effects of C1-, NO3- and a disulfonic stilbene, Plant Physiol., 76: 490.PubMedCrossRefGoogle Scholar
  11. Cidon, S., Ben-David, H., and Nelson, N., 1983, ATP-driven proton fluxes across membranes of secretory organelles, J. Biol. Chem., 258, 11684.PubMedGoogle Scholar
  12. Dean, G. E., Fischkes, H., Nelson, P. J., and Rudnick, G., 1984, The hydrogen ion pumping adenosine-triphosphatase of platelet dense membrane. Differences from F1F0- and phosphoenzyme-type ATPases, J. Biol. Chem., 259: 9569.PubMedGoogle Scholar
  13. Edwards, J., Ap Rees, T., Wilson, P. M., and Morrell, S., 1984, Measurement of the pyrophosphate in tissues of Pisum sativum L., Planta, 162: 188.CrossRefGoogle Scholar
  14. Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G., and Mellman, I., 1983, Acidification of macrophage and fibroblast endocytic vesicles in vitro, Proc. Natl. Acad. Sci. U.S.A., 80: 3334.PubMedCrossRefGoogle Scholar
  15. Griffith, C. J., Rea, P. A., Blumwald, E., and Poole, R. J., 1985, Mechanism of stimulation and inhibition of tonoplast H+-ATPase of Beta vulgaris by chloride and nitrate, Plant Physiol., 81: 120.CrossRefGoogle Scholar
  16. Guynn, R. W., Veloso, D., Lawson, J. W. R., and Veech, R. L., 1974, The concentration and control of cytoplasmic free inorganic pyrophosphate in rat liver in vivo, Biochem. J., 140: 369.PubMedGoogle Scholar
  17. Hager, A., and Helmle, M., 1981, Properties of an ATP-fueled, Cl--dependent proton pump localized in membranes of microsomal vesicles from maize coleoptiles, Z. Naturforsch., 36 c: 997.Google Scholar
  18. Kaestner, K. H., and Sze, H., 1986, Potential-dependent anion transport across tonoplast vesicles from oat roots, Plant Physiol., 80: S-428.Google Scholar
  19. Karlsson, J., 1975, Membrane-bound potassium and magnesium ion stimulated-inorganic pyrophosphatase from roots and cotyledons of sugar beet ( Beta vulgaris L. ), Biochim. Biophys. Acta, 399: 356.PubMedCrossRefGoogle Scholar
  20. Kempner, E. S., and Schlegel, W., 1979, Size determination of enzymes by radiation inactivation, Anal. Biochem., 92: 2.PubMedCrossRefGoogle Scholar
  21. Kornberg, A., 1963, On the metabolic significance of phosphorylytic and pyrophosphorylytic reactions, in: “Horizons in Biochemistry”, M. Kasha and B. Pullman, eds., Academic Press, New-York.Google Scholar
  22. Leigh, R. A., and Pope, A. J., 1987, Understanding tonoplast function: Some emerging problems, in: “Plant Vacuoles. Their Importance in Solute Compartmentation and Their Applications in Biotechnology”, B. Marin, ed., Plenum Publishing Corporation, New-York.Google Scholar
  23. Mandala, S., and Taiz, L., 1984, Solubilization and partial purification of a tonoplast ATPase from corn coleoptiles, Plant Physiol., 78: 327.CrossRefGoogle Scholar
  24. Manolson, M. F., Rea, P. A., and Poole, R. J., 1985, Identification of 3-O-(4-benzoyl)benzoyladenosine-5’-triphosphate-and N,N’-dicyclohexylcarbodiimide-binding subunits of a higher plant H+-translocating tonoplast ATPase, J. Biol. Chem., 260: 12273.PubMedGoogle Scholar
  25. Marin, B., Preisser, J., and Komor, E., 1985, Solubilization and purification of the ATPase from the tonoplast of Hevea, Eur. J. Biochem., 151: 131.PubMedCrossRefGoogle Scholar
  26. Milner-White, E. J., and Watts, D. C., 1971, Inhibition of adenosine-5’-triphosphatecreatine phosphotransferase by substrate-anion complexes. Evidence for the transition state organization of the active site, Biochem. J., 122: 727.PubMedGoogle Scholar
  27. Ohkuma, S., Moriyama, Y., and Takano, T., 1982, Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence, Proc. Natl. Acad. Sci. U.S.A., 79: 2758.PubMedCrossRefGoogle Scholar
  28. Ohsumi, Y., Uchida, E., and Anraku, Y., 1985, The H+-translocating ATPase in vacuolar membranes of Saccharomyces cerevisiae, in: “Biochemistry and Function of Vacuolar Adenosine-Triphosphatase in Fungi and Plants”, B. P. Marin, ed., Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo.Google Scholar
  29. Percy, J. M., Pryde, J. G., and Apps, D. K., 1985, Isolation of ATPase I, the proton pump of chromaffin-granule membranes, Biochem. J., 231: 557.PubMedGoogle Scholar
  30. Randall, S. K., and Sze, H., 1986, Properties of the partially purified tonoplast H+-pumping ATPase from oat roots, J. Biol. Chem., 261: 1364.PubMedGoogle Scholar
  31. Rea, P. A., and Poole, R. J., 1985, Proton-translocating inorganic pyrophosphatase in red beet ( Beta vulgaris L.) tonoplast vesicles, Plant Physiol., 77: 46.PubMedCrossRefGoogle Scholar
  32. Rea, P. A., and Poole, R. J., 1986, Chromatographic resolution of H+-translocating pyrophosphatase from H+-translocating ATPase of higher plant tonoplast, Plant Physiol., 81: 126.PubMedCrossRefGoogle Scholar
  33. Rebeille, F. R., Bligny, R., and Douce, R., 1984, Is the cytoplasmic Pi concentration a limiting factor for plant cell respiration ? Plant Physiol., 74: 355.PubMedCrossRefGoogle Scholar
  34. Reeves, R. E., 1976, How useful is the energy in inorganic pyrophosphate ? Trends Biochem. Sci., 1: 53Google Scholar
  35. Rosing, J., and Slater, E. C., 1972, The value of AG° for the hydrolysis of ATP, Biochim. Biophys. Acta, 267: 275.PubMedCrossRefGoogle Scholar
  36. Schneider, D. L., 1981, ATP-dependent acidification of intact and disrupted lysosomes. Evidence from an ATP-driven proton pump, J. Biol. Chem., 256: 3858.PubMedGoogle Scholar
  37. Senior, A. E., 1985, The proton ATPase of Escherichia coli, Current Top. Membr. Transport, 23: 135.Google Scholar
  38. Serrano, R., Kielland-Brandt, M. C., and Fink, G. R., 1986, Yeast plasma membrane ATPase is essential for growth and has homology with (Nat + K+), K+ and Ca2+-ATPases, Nature, 319: 689.PubMedCrossRefGoogle Scholar
  39. Smith, J. A., Uribe, E. G., Ball, E., Heuer, S., and Lüttge, U., 1984, Characteristics of the vacuolar ATPase activity of the crassulacean-acid-metabolism plant Kalanchoe daigremontiana, Eur. J. Biochem., 141: 415.PubMedCrossRefGoogle Scholar
  40. Smyth, D. A., and Black, C. C., 1984, Measurement of the pyrophosphate content of plant tissues, Plant Physiol., 75: 862.PubMedCrossRefGoogle Scholar
  41. Uchida, E., Ohsumi, Y., and Anraku, Y., 1985, Purification and properties of Httranslocating Mg2+-adenosine-triphosphatase from vacuolar membranes of Saccharomyces cerevisiae, J. Biol. Chem., 260: 1090.Google Scholar
  42. Wagner, G. J., and Mulready, P., 1983, Characterization and solubilization of nucleotide-specific Mg,ATPase and Mg,pyrophosphatase of tonoplast, Biochim. Biophys. Acta, 728: 267.CrossRefGoogle Scholar
  43. Walker, R. R., and Leigh, R. A., 1981, Mg2+-dependent cation-stimulated inorganic pyrophophatase associated with vacuoles isolated from storage roots of red beet ( Beta vulgaris L. ), Planta, 153: 150.Google Scholar
  44. Wang, Y. H., and Sze, H., 1985, H pumping pyrophosphatase in tonoplast vesicles of oat roots, Plant Physiol., 77:S-833.Google Scholar
  45. Williams, N., and Coleman, P. S., 1982, Exploring the adenine nucleotide binding sites on mitochondrial F1-ATPase with a new photoaffinity probe, 3’-0-(benzoyl)benzoyladenosine-5’-triphosphate, J. Biol. Chem., 257: 2834.PubMedGoogle Scholar
  46. Xie, X.-S., Stone, D. K., and Racker, E., 1984, Activation and partial purification of the ATPase of clathrin-coated vesicles and reconstitution of the proton pump, J. Biol. Chem., 259: 11676.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Philip A. Rea
    • 1
  • Christopher J. Griffith
    • 1
  • Dale Sanders
    • 1
  1. 1.Department of BiologyUniversity of YorkHeslington, YorkEngland, UK

Personalised recommendations