Skip to main content

Thermal Wave Imaging for Materials Characterization

  • Chapter
  • 305 Accesses

Abstract

Novel techniques for materials characterization and nondestructive evaluation are being continually developed to meet the requirements of examining an ever-increasing range of new materials, A wide range of physical properties and processes are exploited in the current measurement technologies and it is often necessary to match the characterization technique to the materials problem at hand. A very recent addition to the repertoire of materials characterization techniques is thermal wave imaging. This field encompasses a wide range of techniques for exciting and detecting periodic temperature fields or “thermal waves” in solids. The physical probe for this materials characterization technique is heat and thermal wave imaging thus provides information about local variations in sample thermal properties such as the thermal conductivity and the heat capacity. Thermal wave imaging is a developing technique and although the contrast mechanisms can be identified in simple situations, understanding the contrast in thermal wave images for complicated sample geometries and detection schemes is very involved (1). It is readily apparent that many topics of interest in materials science lend themselves well to characterization on the basis of variations in the sample’s thermal properties. The examples considered in this paper consider interfaces and show that the measurement of variations in the interruption of heat flow across these interfaces provides an effective means for characterizing the structure of the interface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Murphy, J. W. Maclachlan, and L. C. Aamodt, Image contrast processes in thermal and thermoacoustic imaging, to appear in IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control UFFC-33 522 (1986).

    Google Scholar 

  2. J. W. Maclachlan, J. C. Murphy, R. B. Givens, and F. G. Satkiewicz, Linear thermal wave imaging, in: “Proceedings of 11th World Conference on Nondestructive Testing, November 1985, Las Vegas, Nevada, Volume 1,” Taylor Publishing Company, Dallas (1985).

    Google Scholar 

  3. A. C. Boccara, D. Fournier, and J. Badoz, Thermo-optical spectroscopy: Detection by the mirage effect, Appl. Phys. Lett. 36:136 (1980).

    Article  Google Scholar 

  4. J. C. Murphy and L. C. Aamodt, Optically detected photothermal imaging, Appl. Phys. Lett., 38:196 (1981).

    Article  Google Scholar 

  5. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, Photothermal displacement spectroscopy: A new optical probe for solids and surfaces, Appl. Phys. A 32:141 (1983).

    Article  Google Scholar 

  6. A. Rosencwaig, J. Opsal, and D. L. Willenborg, Thin film thickness measurements with thermal waves, Appl. Phys. Lett. 43:166 (1983).

    Article  Google Scholar 

  7. J. C. Murphy and L. C. Aamodt, Reflective photothermal imaging, J. Physique C6–513 (1983).

    Google Scholar 

  8. A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Detection of thermal waves through optical reflectacne, Appl. Phys. Lett. 46:1013 (1985).

    Article  CAS  Google Scholar 

  9. P. E. Nordal and S. O. Kanstad, Photothermal radiometry, Physica Scripta 20:659 (1979).

    Article  CAS  Google Scholar 

  10. G. Busse, Photothermal transmission probing of a metal, Infrared Phys. 20:419 (1980).

    Article  CAS  Google Scholar 

  11. G. Busse and A. Rosencwaig, Subsurface imaging with photoacoustics, Appl. Phys. Lett. 36:815 (1980).

    Article  CAS  Google Scholar 

  12. G. S. Cargill, Electron-acoustic microscopy, in: “Scanned Image Microscopy” E. A. Ash, ed., Academic Press, London (1980).

    Google Scholar 

  13. S. Ameri, E. A. Ash, V. Neuman and C. R. Petts, Photo-displacement imaging, Elec Lett. 17:337 (1981).

    Article  Google Scholar 

  14. J. W. Maclachlan, R. B. Givens, J. C. Murphy, and L. C. Aamodt, Contrast Mechanisms in Scanning Electron Acoustic Imaging of Grain Boundaries, 4th International Topical Meeting on Photoacoustic, Thermal and Related Sciences, Ville d’Esterel, Quebec, Aug. 4–8, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Maclachlan, J.W., Murphy, J.C. (1987). Thermal Wave Imaging for Materials Characterization. In: Bussière, J.F., Monchalin, JP., Ruud, C.O., Green, R.E. (eds) Nondestructive Characterization of Materials II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5338-6_81

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5338-6_81

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5340-9

  • Online ISBN: 978-1-4684-5338-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics