Advertisement

Ultrasonic Texture Analysis for Polycrystalline Aggregates of Cubic Materials Displaying Orthotropic Symmetry

  • P. P. Delsanto
  • R. B. Mignogna
  • A. V. ClarkJr.

Abstract

The study of the applications of the acoustoelastic effect, i.e. the stress-dependence of the propagation velocity of ultrasonic waves in deformed elastic media, has undergone considerable progress in recent years.1 Techniques for the determination of applied and residual stresses have been proposed both for bulk2–5 and for surface6–9 ultrasonic waves. However, for the practical application of these techniques to fabricated materials, the difficulty of separating the often competing effects of stress and texture remains a vexing problem.

Keywords

Elastic Constant Rayleigh Wave Orthotropic Material Texture Coefficient Perturbative Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Hughes and J. L. Kelly, Phys. Rev. 92, 1145 (1953)CrossRefGoogle Scholar
  2. 2.
    R. B. King and C. M. Fortunko, J. Appl. Phys. 54, 3027 (1983)CrossRefGoogle Scholar
  3. 3.
    R. B. King and C. M. Fortunko, NBSIR 84–3002, National Bureau of Standards, Boulder, Colorado (1984)Google Scholar
  4. 4.
    A. V. Clark and R. B. Mignogna, Ultrasonics 22, 205 (1984)CrossRefGoogle Scholar
  5. 5.
    A. V. Clark and R. B. Mignogna, in Rev. Progress in Quantitative NDE, Vol. 4B, D. O. Thompson and D. E. Chimenti, Eds. (Plenum Press, New York, 1985), p. 1095Google Scholar
  6. 6.
    M. Hirao, H. Fukuoka and K. Hori, J. Appl. Mech. 48, 119 (1981)CrossRefGoogle Scholar
  7. 7.
    P. P. Delsanto and A. V. Clark, in Rev. Progress in Quantitative NDE, Vol. 5B, D. O. Thompson and D. E. Chimenti, Eds. (Plenum Press, New York, 1986), p. 1407Google Scholar
  8. 8.
    G. T. Mase and G. C. Johnson, “Surface Waves in Anisotropic Materials,” to appear in Rev. Progress in Quantitative NDE, Vol. 5.Google Scholar
  9. 9.
    A. Zeiger and K. Jassby, J. of Nondestr. Ev. 3, 115 (1982)CrossRefGoogle Scholar
  10. 10.
    C. M. Sayers, J. Phys. D 15, 2157 (1982)CrossRefGoogle Scholar
  11. 11.
    D. R. Allen, R. Langman and C. M. Sayers, Ultrasonics 23, 215 (1985)CrossRefGoogle Scholar
  12. 12.
    P. P. Delsanto and A.V. Clark, “Rayleigh Wave Propagation in Deformed Orthotropic Materials,” submitted to J. Acoust. Soc. Am.Google Scholar
  13. 13.
    R. B. Mignogna, P. P. Delsanto, B. B. Rath, C. L. Vold and A. V. Clark, “Ultrasonic Measurements on Textured Materials,” to be presented at the 2nd Int. Symposium on the Nondestructive Characterization of Materials, Montreal, July 21–3, 1986Google Scholar
  14. 14.
    I. A. Viktorov, Rayleigh and Lamb Waves (Plenum Press, N.Y., 1967)Google Scholar
  15. 15.
    W. P. Mason, Physical Acoustics and the Properties of Solids (D. Van Nostrand Co., N.Y., 1958)Google Scholar
  16. 16.
    R. J. Roe, J. Appl. Phys. 37, 2069 (1966)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • P. P. Delsanto
    • 1
  • R. B. Mignogna
    • 1
  • A. V. ClarkJr.
    • 2
  1. 1.Naval Research LaboratoryUSA
  2. 2.Fracture and Deformation DivisionNational Bureau of StandardsBoulderUSA

Personalised recommendations