Internal Stress Evaluation by Attenuation Measurements during Room Temperature Creep in 5N Aluminium

  • A. Vincent
  • S. Djeroud
  • R. Fougeres


It is generally well established that the resolved shear stress, due to an applied tensile stress which is large enough in order to induce long-range dislocation movements, can be divided in two components: the first one, τeff., originates from short-range stress obstacles which can be overcome with the help of thermal energy and the second one is due to long-range stress obstacles for which thermal activation is not effective; this latter component leads to the so called “internal stress” (τi). In the past, from relaxation /1/ or creep /2/ tests, various methods have been proposed in order to determine this internal stress. More recently, some evaluations of τi have been carried out by measuring the dislocation loop radius of curvature during T.E.M. observations /3/.


Point Defect Internal Stress Dislocation Loop Ultrasonic Attenuation Applied Tensile Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    A.A. SOLOMON, New techniques and apparatus for examining the elevated temperature deformation of Metals, Rev. Sci. Instrum. 40, 1025, (1969).CrossRefGoogle Scholar
  2. /2/.
    C.N. AHLQUIST and W.D. NIX, A technique for measuring mean internal stress during high temperature creep, Scripta Met., 3, 679 (1969).CrossRefGoogle Scholar
  3. /3/.
    J. LEPINOUX and L.P. KUBIN, In situ T.E.M. observations of the cyclic dislocation behaviour in persistent slip bands of copper single crystals, Phil. Mag. A, 51, 5, 675 (1985).CrossRefGoogle Scholar
  4. /4/.
    G.J. LYOYD and R.J. MC ELROY, On the anelastic contribution to creep, Acta Met., 22, 339 (1974).CrossRefGoogle Scholar
  5. /5/.
    P. PAHUTOVA, M. CADECK and P. RYS, Anelasticity and measured internal stress in high temperature creep, Scripta Met., 11, 1061, (1977).CrossRefGoogle Scholar
  6. /6/.
    F. DOBES, The influence of anelasticity on the measurement of internal stress in creep, Scripta Met., 15, 215 (1980).CrossRefGoogle Scholar
  7. /7/.
    J. CHICOIS, A. HAMEL, R. FOUGERES et J. PEREZ, Estimation expérimentale de l’influence de l’anélasticité sur la mesure des contraintes internes en fluage à basse temperature, Scripta. Met., 15, 599 (1981).CrossRefGoogle Scholar
  8. /8/.
    A. VINCENT, J.L. BOUVIER VOLAILLE et P. FLEISCHMANN, Utilisation d’un microordinateur pour l’étude des variations rapides de l’atténuation et de la vitesse des onde ultrasonores. J. Phys. E, 15, 765 (1982).CrossRefGoogle Scholar
  9. /9/.
    O.D. SHERBY, J.L. LYTTON and J.E. DORN, Activation energies for creep of high-purity aluminium, Acta Met., 5, 219 (1957).CrossRefGoogle Scholar
  10. /10/.
    A. GRANATO and K. LUCKE, Theory of mechanical damping due to dislocations, J. Appl. Phys. 27, 6, 583 (1956).CrossRefGoogle Scholar
  11. /11/.
    G.B. GIBBS, The thermodynamics of thermally-activated dislocation glide, Phys. Stat. Sol., 10, 507 (1965).CrossRefGoogle Scholar
  12. /12/.
    A. VINCENT, S.M. SEYED REIHANI and J. PEREZ, The nature of dislocation-pinning defects in cold-worked aluminium studied by ultrasonic waves. Phys. Stat. Sol. (a), 39, 651 (1977).CrossRefGoogle Scholar
  13. /13/.
    A. VINCENT et J. PEREZ, Etude de l’interaction dislocation-défauts ponctuels par méthode ultrasonore sous contrainte quasi-statique, Phil. Mag. A, 40, 3, 377 (1979).CrossRefGoogle Scholar
  14. /14/.
    G. GREMAUD, Complex interaction mechanisms between dislocations and point defects involving simultaneously depinning-repinning and dragging processes, J. de Physique C9, 12, 44, 607 (1983).Google Scholar
  15. /15/.
    J. CHICOIS, A. HAMEL, R. FOUGERES, C. ESNOUF, G. FANTOZZI and J. PEREZ, Internal Stress measurement in aluminium by Dip Test method and correlation with the Bordoni relaxation evolution, J. de Physique, C5, 10, 42, 169 (1981).Google Scholar
  16. /16/.
    A.A. ALY, T.G. ABDEL-MALIK, A.M. ABDEEN and H.M. ELLABANY, Stress relaxation in single crystals of copper and aluminium, Mat. Sci. and Engng 62, 181 (1984).CrossRefGoogle Scholar
  17. /17/.
    C. CRUSSARD, Etude rhéologique du fluage et de l’hystérésis mécanique des matériaux, Métaux, Corrosion, Industrie, 299 (1963–1964).Google Scholar
  18. /18/.
    H. OIKAWA AND T; LANGDON, The creep characteristics of pure metals and metallic solid solution alloys, in: “Creep behaviour of crystalline solids”, B. WILSHIRE and R.W. EVANS ed., Pineridge Press, Swansea (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. Vincent
    • 1
    • 2
  • S. Djeroud
    • 2
  • R. Fougeres
    • 2
  1. 1.Groupes d’Etudes de Métallurgie Physique et de Physique des Matériaux (UA CNRS 341)France
  2. 2.Laboratoire de Traitement du Signal et d’UltrasonsVilleurbanne CedexFrance

Personalised recommendations