Advertisement

Ultrasonic Characterization of Polymers in Their Evolution From Solid to Liquid State

  • F. Massines
  • L. Piché

Abstract

A polymer can be defined as a large molecule made of a number of repeating units. Actually many natural organic substances, such as hevea rubber, cellulose, starch, leather, proteins... are polymers. The hypothesis, that these materials are made of very long chains and that they owe their specific properties to this peculiar structure, was first put forth by Kekule in 1877. Since then, the macromolecular theory has been substantiated by its numerous success, both scientific — one of the most exhilarating being the discovery of the double helix structure for the DNA molecule by Crick, Watson and Wilkins (1953) — and industrial, with the advent of totally synthetic polymers which today represent an important portion of industrial materials.

Keywords

Glass Transition Temperature Differential Thermal Analysis Free Volume Specific Volume Thermal History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Ferry, “Viscoelastic Properties of Polymers”, John Wiley and Sons, New York (1970)Google Scholar
  2. 2.
    N.G. McCrum, B.E. Read, and G. Williams, “Anelastic and Dielectric Effects in Polymeric Solids”, John Wiley and Sons, New York (1967)Google Scholar
  3. 3.
    B. Hartmann, “Ultrasonic Measurements” in “Methods of Experimental Physics”, edited by R.A. Fava, Academic Press, New York (1980), Vol. 16-c, Chap. 12.1, pp. 59–90Google Scholar
  4. 4.
    D.W. Phillips, and R.A. Pethrick, J. Macromol. Sci. — Rev. Macro-mol. Chem., c 16, 1 (1977–1978)Google Scholar
  5. 5.
    J. Lamb, “Thermal Relaxation in Liquids” in “Physical Acoustics”, edited by W.P. Mason, Academic Press, New York (1965), Vol. II-A, Chap. 4, pp. 203–280Google Scholar
  6. 6.
    K.F. Herzfeld, and T.A. Litovitz, “Absorption and Dispersion of Ultrasonic Waves”, Academic Press, New York (1959)Google Scholar
  7. 7.
    T.A. Litovitz, and CM. Davis, “Structural and Shear Relaxation in Liquids” in “Physical Acoustics”, edited by W.P. Mason, Academic Press, New York (1965), Vol. II-A, Chap. 5, pp. 281–350Google Scholar
  8. 8.
    R.M. Christensen, “Theory of Viscoelasticity”, Academic Press, New York (1971)Google Scholar
  9. 9.
    H.J. McSkimin, “Ultrasonic Methods for Measuring the Mechanical Properties of Liquids and Solids” in “Physical Acoustics”, edited by W.P. Mason, Academic Press, New York (1964), Vol. I-A, Chap. 4, pp. 271–334Google Scholar
  10. 10.
    W. Mason, W. Baker, H.J. McSkimin, and J. Heiss, Phys. Rev., 73, 1074 (1948)CrossRefGoogle Scholar
  11. 11.
    A.W. Nolle, and P.W. Sieck, J. Appl. Phys., 23, 888 (1952)CrossRefGoogle Scholar
  12. 12.
    Y. Wada, and K. Yamamoto, J. Phys. Soc. Jpn., 11, 887 (1956)CrossRefGoogle Scholar
  13. 13.
    R. Kono, J. Phys. Soc. Jpn., 15, 718 (1960)CrossRefGoogle Scholar
  14. 14.
    H.A. Waterman, Kolloid-Z., 192, 1 (1963)CrossRefGoogle Scholar
  15. 15.
    B. Hartmann, and J. Jarzinski, J. Acoust. Soc. Am., 56, 1469 (1974)CrossRefGoogle Scholar
  16. 16.
    G.W. Paddison, Proc. IEEE Ultrasonics Symposium, 502 (1979)Google Scholar
  17. 17.
    H.J. McSkimin, J. Acoust. Soc. Am., 22, 413 (1950)Google Scholar
  18. 18.
    J.R. Cunningham, and D.G. Ivey, J. Appl. Phys., 27, 967 (1956)CrossRefGoogle Scholar
  19. 19.
    N.D. Arnold, and A.H. Guenther, J. Appl. Polym. Sci.,10, 731 (1966)CrossRefGoogle Scholar
  20. 20.
    J.R. Asay, and A.H. Guenther, J. Appl. Polym. Sci., 11, 1087 (1967)CrossRefGoogle Scholar
  21. 21.
    J. Arman, Acustica, 43, 212 (1979)Google Scholar
  22. 22.
    R. Kono, and H. Yoshizaki, J. Appl. Phys., 47, 531 (1976)CrossRefGoogle Scholar
  23. 23.
    H.J. McSkimin, and R.P. Chambers, Proc. IEEE Trans. Sonics Ultrasonics, SU-11, 74 (1964)Google Scholar
  24. 24.
    J.R. Asay, D.L. Lamberson, and A.H. Guenther, J. Appl. Phys., 40, 1768 (1969)CrossRefGoogle Scholar
  25. 25.
    R. Kono, J. Phys. Soc. Jpn., 16, 1580 (1961)CrossRefGoogle Scholar
  26. 26.
    Y. Wada, H. Hirose, H. Umebayashi, and M. Otomo, J. Phys. Soc. Jpn., 15, 2324 (1960)CrossRefGoogle Scholar
  27. 27.
    E. Morita, R. Kono, and H. Yoshizaki, Jpn. J. Appl. Phys., 7, 451 (1968)CrossRefGoogle Scholar
  28. 28.
    D.L. Lamberson, J.R. Asay, and A.H. Guenther, J. Appl. Phys., 43, 976 (1972)CrossRefGoogle Scholar
  29. 29.
    Y. Wada, A. Itany, T. Nishi, and S. Nagai, J. Polym. Sci: A2, 7, 201 (1969)Google Scholar
  30. 30.
    B. Hartmann, Acustica, 36, 24 (1976)Google Scholar
  31. 31.
    B. Hartmann, and J. Jarzinski, J. Appl. Phys., 43, 4304 (1972)CrossRefGoogle Scholar
  32. 32.
    R.S. Marvin, R. Aldrich, and H.S. Sack, J. Appl. Phys., 25, 1213 (1954)CrossRefGoogle Scholar
  33. 33.
    C. Delides, and R.A. Pethrick, Eur. Polym. J., 17, 675 (1981)CrossRefGoogle Scholar
  34. 34.
    A.M. North, R.A. Pethrick, and D.W. Phillips, Polymer, 18, 324 (1977)CrossRefGoogle Scholar
  35. 35.
    D.W. Phillips, A.M. North, and R.A. Pethrick, J. Appl. Polym. Sci., 21, 1859 (1977)CrossRefGoogle Scholar
  36. 36.
    B. Hartmann, J. Appl. Polym. Sci., 19, 3241 (1975)CrossRefGoogle Scholar
  37. 37.
    A.M. North, R.A. Pethrick, and D.W. Phillips, Macromolecules, 10, 993 (1977)CrossRefGoogle Scholar
  38. 38.
    A.S. Gilbert, R.A. Pethrick, and D.W. Phillips, J. Appl. Polym. Sci., 21, 319 (1977)CrossRefGoogle Scholar
  39. 39.
    D.J. Hourston, and J.A. McCluskey, Polymer, 22, 405 (1981)CrossRefGoogle Scholar
  40. 40.
    A.J. Barlow, M. Day, G. Harrison, J. Lamb, and S. Subramanian, Proc. Roy. Soc, A.309, 497 (1969)CrossRefGoogle Scholar
  41. 41.
    W. Bell, A.M. North, R.A. Pethrick, and P.B. Teik, J.C.S. Faraday II, 75, 1115 (1979)Google Scholar
  42. 42.
    O. Yano, and Y. Wada, J. Polym. Sci; A-2, 9, 669 (1971)CrossRefGoogle Scholar
  43. 43.
    K. Skimizu, O. Yano, Y. Wada, and Y. Kawamura, J. Polym. Sci; Polym. Phys. Ed., 11, 1641 (1973)Google Scholar
  44. 44.
    I.I. Perepechko, and V.E. Sorokin, Sov. Phys.-Acoust., 18, 485 (1973)Google Scholar
  45. 45.
    J.Y. Duquesne, and G. Bellessa, J. Physique — Lett., 40, L-193 (1979); and 42, L-491 (1981)Google Scholar
  46. 46.
    R.K. Eby, J. Acoust. Soc. Am., 36, 1485 (1964)Google Scholar
  47. 47.
    K. Adachi, G. Harrison, J. Lamb, A.M. North, and R.A. Pethrick, Polymer, 22, 1032 (1981)CrossRefGoogle Scholar
  48. 48.
    K. Adachi, G. Harrison, J. Lamb, A.M. North and R.A. Pethrick, Polymer, 22., 1026 (1981)CrossRefGoogle Scholar
  49. 49.
    K. Nagata, K. Tagashira, S. Taki, and T. Takemura, Jpn. J. Appl. Phys., 19, 985 (1980)CrossRefGoogle Scholar
  50. 50.
    “Annual Book of ASTM Standards”, Part 8, ASTM, Philadelphia (1986)Google Scholar
  51. 51.
    D.J. Pollock, and R.T. Kratz, “Polymer Molecular Weights” in “Methods of Experimental Physics”, edited by R.A. Fava, Academic Press, New York (1980), Vol. 16A, Chap. 2, pp. 13–72Google Scholar
  52. 52.
    J. Runt, and I.R. Harrison, “Thermal Analysis of Polymers”, in “Methods of Experimental Physics” edited by R.A. Fava, Academic Press, New York (1980), Vol. 16-b, Chap. 9, pp.287–338Google Scholar
  53. 53.
    D.W. Van Krevelen, “Properties of Polymers, Their Estimation and Correlation with Chemical Structure”, Elsevier, New York (1976)Google Scholar
  54. 54.
    S. Matsukoa, and B. Maxwell, J. Polym. Sci., 22, 131 (1958)CrossRefGoogle Scholar
  55. 55.
    R.F. Boyer, “Styrene Polymers, Physical Properties” in “Encyclopedia of Polymer Science and Technology”, John Wiley and Sons, New York (1970), Vol. 13, pp. 251–326Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • F. Massines
    • 1
  • L. Piché
    • 1
  1. 1.Industrial Materials Research InstituteNational Research Council CanadaBouchervilleCanada

Personalised recommendations