Nondestructive Evaluation of Creep Damage in Service Exposed 14 MoV 6 3 steel

  • H. Willems
  • W. Bendick
  • H. Weber


Ultrasonic techniques as well as electrical resistivity measurements were applied to assess the degree of creep damage in 14 MoV 6 3 steel (0.5 Cr, 0.5 Mo, 0.25 V), Samples were cut from a tube bend which had failed after 130,000 h/535°C service exposure providing us with a complete variety of damage states. Using metallographic methods the microstructural damage was classified in terms of micropore concentration and microcrack formation, respectively. The actual porosity of the material was determined quantitatively by density measurements.

The obtained results show that both ultrasonic velocity (longitudinal waves, shear waves, and surface waves) and electrical resistivity can be used for damage characterization whereas ultrasonic attenuation measurements did not prove to be appropriate in this case. The experimental results are in good agreement with theoretical predictions. Especially ultrasonic velocity measurements seem to have a high potential for practical applications.


Electrical Resistivity Creep Rate Damage State Ultrasonic Velocity Creep Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Bendick, W. and Weber, H.: VGB Kraftwerkstechnik 66 (1986) 63–72 and 170–177Google Scholar
  2. /2/.
    Fabritius, H. and Weber, H.: Proc. VGB Conf. “Beurteilung von Bauteilen nach Beanspruchung im Kriechbereich”, Essen, Feb. 1984, 73–72Google Scholar
  3. /3/.
    Bruehl, F., Kalwa G., and Weber, H.: VGB Kraftwerkstechnik 65 (1985) 1059–1068Google Scholar
  4. /4/.
    Bendick, W., Bruening, B., and Weber, H.: Sonderbände der Praktischen Metallografie, Nr. 16, 439–450, Dr. Riederer Verlag, Stuttgart 1985Google Scholar
  5. /5/.
    McSkimin, H.L.: J. Acoust. Soc. Am. 33 (1961) 12CrossRefGoogle Scholar
  6. /6/.
    Bamberg, J., Schmitt, H., and Arnold, W.: Rev. Sci. Instrum. 53 (1982) 1613CrossRefGoogle Scholar
  7. /7/.
    Bendick, W., Kalwa, G., and Weber, H.: Conf. “High Temperature Alloys”, Petten, Oct. 15–17, 1985Google Scholar
  8. /8/.
    Ondracek, G.: Z. Werkstofftech. 8 (1977) 280–287CrossRefGoogle Scholar
  9. /9/.
    Watermann, P.C. and Truell, R.: J. Math. Phys. 2 (1961) 512–537CrossRefGoogle Scholar
  10. /10/.
    Hirsekorn, S.: IzfP-Bericht Nr. 790218-TW, Saarbrücken 1979Google Scholar
  11. /11/.
    Sayers, C.M. and Smith, R.L.: Ultrasonics, Sept. 1982, 201Google Scholar
  12. /12/.
    S. Hirsekorn: J. Acoust. Soc. Am. 72 (1982) 1021CrossRefGoogle Scholar
  13. /13/.
    S. Hirsekorn: Unpublished resultsGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • H. Willems
    • 1
  • W. Bendick
    • 2
  • H. Weber
    • 2
  1. 1.Fraunhofer-Institut für zerstörungsfreie PrüfverfahrenSaarbrücken 11Germany
  2. 2.Mannesmann Forschungsinstitut GmbHDuisburgGermany

Personalised recommendations