Mechanical Properties of Composite Materials Studied by Internal Fricton

  • R. Schaller
  • J. J. Ammann
  • P. Millet


Mechanical properties of materials depend strongly on their structural defects (point defects, dislocations, grain boundaries, precipitates). Structural defects can be studied by classical mechanical tests such as tensile, compressive, hardness, creep or rupture mechanics tests. These techniques provide direct information on the mechanical properties of the material, like yield stress, tensile strength, toughness, ductility, but they are destructive by nature and the microstructure is strongly altered by the test.


Internal Friction Relaxation Peak Grey Cast Iron Pure Graphite White Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.S. Nowick and B.S. Berry, “Anelastic Relaxation in Crystalline Solids, Academic Press, New York (1972).Google Scholar
  2. 2.
    W. Benoit, G. Gremaud and R. Schaller, Anelasticity and dislocation Damping in: “Plastic Deformation of Amorphous and Semi-Crystalline Materials”, B. Escaig and G. G’sell, ed., Les Éditions de Physique, Paris (1982).Google Scholar
  3. 3.
    E. Plénard, Intérêt pratique de la grande capacité d’amortissement des fontes, Fonderie 177: 419 (1960).Google Scholar
  4. 4.
    M.A.O. Fox and R.D. Adams, Correlation of the Damping Capacity of Cast Iron with its mechanical Properties and Microstructure, J. Mech. Eng. Sci., 15: 81 (1973).CrossRefGoogle Scholar
  5. 5.
    C. Bonjour, Nouveaux développements dans les outils de coupe en carbure fritté, Wear, 62: 83 (1980).CrossRefGoogle Scholar
  6. 6.
    G. Fantozzi and I.G. Ritchie, Internal Friction caused by the Intrinsic Properties of Dislocations, J. Physique 42: C5–3 (1981).CrossRefGoogle Scholar
  7. 7.
    K. Lücke and A.V. Granato, The Rigid Rod Model of dislocation Resonance Including Applications to Point Defect Drag, J. Physique 42: C5–327 (1981).CrossRefGoogle Scholar
  8. 8.
    R. Schaller and W. Benoit, Internal Friction Associated with Precipitation in Al-Ag Alloys, in: “Internal Friction and Ultrasonic Attenuation in solids”, C.C. Smith, ed., Pergamon Press, Oxford and New York (1980).Google Scholar
  9. 9.
    P. Millet, R. Schaller, W. Benoit, Characteristic Internal Friction Spectrum of Grey Cast Iron, J. Physique 42: C5–929 (1981).CrossRefGoogle Scholar
  10. 10.
    P. Millet, R. Schaller, W. Benoit, Study of the internal Friction Spectrum of Grey Cast Iron, J. Physique 44: C9–511 (1983).Google Scholar
  11. 11.
    P. Millet, R. Schaller, W. Benoit, High Damping in Grey Cast Iron, J. Physique, 46: C10–405 (1985).Google Scholar
  12. 12.
    R. Schaller, W. Benoit, Développement d’alliages biphasés à fort amortissement, un exemple: les fontes grises, Material und Technik 13: 63 (1985).Google Scholar
  13. 13.
    R. Schaller, J.J. Ammann, A. Kulik, et al., Internal Friction Spectrum of WC-Co Composite Alloys, J. Physique 46: C10–387 (1985).Google Scholar
  14. 14.
    J.E. Bidaux, R. Schaller, W. Benoit, Internal Friction Associated with the Allotropic Transformation of Cobalt, J. Physique, 46: C10–601 (1985).Google Scholar
  15. 15.
    G. Fantozzi, H. Si Mohand and G. Orange, High Temperature Mechanical Behaviour of WC-6 wt % Co cemented Carbide, Inst. Phys. Conf. Ser. 75: 699 (1986).Google Scholar
  16. 16.
    B. Johannesson and R. Warren, Fracture of Hardmetals up to 1000°C, Inst. Phys. Conf. Ser. 75: 713 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. Schaller
    • 1
  • J. J. Ammann
    • 1
  • P. Millet
    • 1
  1. 1.Institut de génie atomique, Swiss Federal Institute of TechnologyPHB-EcublensLausanneSwitzerland

Personalised recommendations