Advertisement

Cyclic Plasticity of Pure Aluminum Studies by Continuous Acoustic Emission Measurement

  • A. Slimani
  • P. Fleischmann
  • R. Fougères

Abstract

Continuous acoustic emission (AE) observed during plastic deformation of pure metals such as Aℓ or Cu is currently used for experimental verification of theoretical models which link the acoustic waves to microscopic mechanisms acting as emission sources. Indeed, in such materials, these mechanisms were well studied and only attributed to the dislocation movement. In a pure polycrystalline material, at the beginning of plastic deformation, Frank’s dislocation sources generate a great number of dislocations which can move over large distances in relation to the grain size. However, as the plastic deformation increases, these distances diminish as a result of the mutual interaction between dislocations.

Keywords

Acoustic Emission Cyclic Deformation Plastic Strain Amplitude Fatigue Stress Saturated Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.B. Scruby, H.N.G. Wadley and J.J. Hill, “Dynamic elastic displacement at the surface of an elastic half-space due to defect sources”, J. Phys. D: Appl. Phys., 16, 1983, 1069–1083.CrossRefGoogle Scholar
  2. 2.
    N. Kiesewetter, P. Schiller, “Acoustic emission from moving dislocation in Aluminum”, Phys., stat. sol. (a) 38, 569–576 (1976).CrossRefGoogle Scholar
  3. 3.
    N.N. Hsu, Y.A. Simmons, S.C. Hardy, “An approach to acoustic emission signal analysis theory and experiment”, Materials Evaluation, October 1977, 100–106.Google Scholar
  4. 4.
    D. Rouby, P. Fleischmann, C. Duvergier, “Un modèle de sources d’émission acoustique pour l’analyse de l’émission continue et de l’émission par salves”, Phil. Mag. A, 1983, 47, 671–687 et 689–705.CrossRefGoogle Scholar
  5. 5.
    H. Hatano, H. Tanaka, R. Horiuchi and N. Niwa, “Stress wave emission during plastic deformation in pure aluminum”, J. Jap. Inst. Met., 1975, 39, 7, 675–679.Google Scholar
  6. 6.
    M.A. Hamstad and A.K. Mukherjee, “The dependence of acoustic emission on strain and strain rate for a dispersion strengthened aluminum alloy”, Proceeding 4th Int. Conf. on the Strength of Metals and Alloys, Nancy, 1976, 574–578.Google Scholar
  7. 7.
    D.R. James and S.H. Carpenter, “Relation between acoustic emission and dislocation kinetics in crystalline solids”, J. of Phys., 42, 12, 1971, 4685–4697.Google Scholar
  8. 8.
    H.N.G. Wadley and R. Mehrabian, “Acoustic emission for materials processing: a review”, Mater. Sc, and Eng., 65, 1984, 245–263.CrossRefGoogle Scholar
  9. 9.
    P. Fleischmann, D. Rouby, F. Lakestani and J.C. Baboux, “Spectral and energetical analysis of a moving ultrasonic source. Application to acoustic emission during plastic deformation of aluminum”, Mat. Sc. and Eng., 29, 1977, 205–210.CrossRefGoogle Scholar
  10. 10.
    N.G. Sankar, Y.R. Frederick and D.K. Felbek, “Acoustic emission from metals during unloading and its relation to the Bauschinger effect”, Met. Trans. 1 (1970) 2979–2985.Google Scholar
  11. 11.
    R. Rahouadj “Instabilité de l’état écroui et émission acoustique du cuivre pur mono et polycristallin” Thèse de Doctorat, 1985, Université de Technologie de Compiègne, France.Google Scholar
  12. 12.
    T. Kishi, Y. Obata, H. Tanaka and Y. Sakakibara, “Acoustic emission peak under cyclic deformation”, Journal of Japan Institute of Metals, 5, 40, 1976, 492–498.Google Scholar
  13. 13.
    G. Guichon, J. Chicois, C. Esnouf and R. Fougères, “Study of dislocation structure in a polycrystalline pure aluminum strained under fatigue conditions”, Fatigue 84, Chameleon Press, Vol. 1, 1984, 31–37.Google Scholar
  14. 14.
    A. Vincent, A. Hamel, J. Chicois and R. Fougères “Dislocations mobility in 5N aluminum during push-pull cycling studied by ultrasonic attenuation measurements. J. de Phys. Colloque C10, supplément au No. 12, Tome 46, (1985), C10–321.Google Scholar
  15. 15.
    A. Hamel, A. Vincent, J. Chicois, C. Mai and R. Fougères, “On the fatigue behaviour of pure polycrystalline aluminum studied by unloading stiffness evolution”, Fatigue 84, Chameleon Press, vol. 1, 1984, 72–82.Google Scholar
  16. 16.
    A. Slimani, “Étude par émission acoustique de la déformation cyclique de polycristaux d’aluminum 5N sollicités en traction compression” Thèse de Doctorat, 1986, Institut National des Sciences Appliquées de Lyon, France.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. Slimani
    • 1
  • P. Fleischmann
    • 1
  • R. Fougères
    • 1
  1. 1.Groupe d’Études de Métallurgie Physique et de Physique des Matériaux (U.A. CNRS341)INSA de LyonVilleurbanne CedexFrance

Personalised recommendations