Ultrasonic Determination of Fracture Toughness

  • A. N. Sinclair
  • H. Eng


The characteristics of sound propagation through any material are dependent on virtually all physical aspects of the medium: atomic constituents, grain size, shape, and structure, phase boundaries, elastic constants, presence of flaws or dislocations, etc. At least in theory, a detailed knowledge of a material’s structure should allow the determination of its acoustic transfer function or impulse response; this would enable the calculation of the acoustic signal arriving at any point on the structure given an arbitrary system input. Unfortunately, the transfer function corresponding to most material characteristics is extremely complicated. Once it has been calculated, an even more difficult problem is determining an approximate inverse transfer function, assuming that one exists.


Fracture Toughness Stress Wave Linear Elastic Fracture Mechanic Maraging Steel Ultrasonic Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Vary and D.R. Hull, Interrelation of Material Microstructure, Ultrasonic Factors, and Fracture Toughness of a Two-Phase Titanium Alloy, Mat. Eval. 41:309 (1974).Google Scholar
  2. 2.
    L.S. Fu, “On the Feasibility of Quantitative Ultrasonic Determination of Fracture Toughness — A Literature Review”, NASA Report # 3356 (1980).Google Scholar
  3. 3.
    F.H. Froes, J.C. Chesnutt, C.G. Rhodes, and J.C. Williams, Relationship of Fracture Toughness and Ductility to Microstructure and Fractographic Features in Advanced Deep Hardenable Titanium Alloys, in: “Toughness and Fracture Behaviour of Titanium”, ASTM STP 651 (1978).Google Scholar
  4. 4.
    R.W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, J. Wiley & Sons, New York (1983).Google Scholar
  5. 5.
    P. Beaudet, “Study of the Effect of Dwell Time on the Fatigue Crack Propagation Rate in Ti-6A1–4V Alloy”, MASc. thesis, University of Toronto (1986).Google Scholar
  6. 6.
    A. Vary, Correlations Between Ultrasonic and Fracture Toughness Factors in Metallic Materials, in: “Fracture Mechanics”, ASTM STP 677 (1979).Google Scholar
  7. 7.
    R.L. Smith, K.L. Rusbridge, W.N. Reynolds, and B. Hudson, Ultrasonic Attenuation, Microstructure, and Ductile to Brittle Transition Temperature in Fe-C Alloys, Mat. Eval. 41(2):219 (1983).Google Scholar
  8. 8.
    A. Vary, Correlations among Ultrasonic Propagation Factors and Fracture Toughness Properties of Metallic Materials, Mat. Eval. 26(7):55 (1978).Google Scholar
  9. 9.
    A. Vary and D.R. Hull, “Ultrasonic Ranking of Toughness of Tungsten Carbide”, NASA Technical Memorandum #83358, Cleveland (1983).Google Scholar
  10. 10.
    L.S. Fu, Mechanics Aspects of NDE by Sound and Ultrasound, Appl. Mec. Rev. 35(8):1047 (1982).Google Scholar
  11. 11.
    S.W. Flax, N.G. Pelc, G.H. Glover, F.D. Gutman, and M. McLachlan, Spectral Characterization and Attenuation Measurements in Ultrasound, Ultrasonic Imag. 5:95 (1983).CrossRefGoogle Scholar
  12. 12.
    A. Vary, “Ultrasonic Nondestructive Evaluation, Microstructure, and Mechanical Property Interrelations”, NASA Technical Memorandum #86876, Cleveland (1984).Google Scholar
  13. 13.
    E.R. Generazio, Ultrasonic Verification of Microstructural Changes Due to Heat Treatment, in: “Analytical Ultrasonics in Materials Research and Testing”, NASA Report #CP-2383 (1984).Google Scholar
  14. 14.
    G.B. Devey and P.N.T. Wells, Ultrasound in Medical Diagnosis, Sci. Am. 238:98 (May 1978).CrossRefGoogle Scholar
  15. 15.
    S. Leeman, L. Ferrari, J.P. Jones, and M. Fink, Perspectives on Attenuation Estimation from Pulse-Echo Signals, IEEE Trans. Sonics and Ultrasonics, SU-31(4):352 (1984).CrossRefGoogle Scholar
  16. 16.
    E.R. Generazio, “The Role of the Reflection Coefficient in Precision Measurement of Ultrasonic Attenuation”, NASA #83788, Cleveland (1984).Google Scholar
  17. 17.
    N.F. Haines, “The Theory of Sound Transmission and Reflection at Contacting Surfaces”, CEGB Report #RD/B/N4744, Berkeley Laboratories (1980).Google Scholar
  18. 18.
    W.N. Reynolds and R.L. Smith, Ultrasonic Wave Attenuation Spectra in Steels, J. Phys. D: Appl. Phys., 17:109 (1984).CrossRefGoogle Scholar
  19. 19.
    L.S. Fu, On Ultrasonic Factors and Fracture Toughness, Eng. Frac. Mec., 18(1):59 (1983).CrossRefGoogle Scholar
  20. 20.
    F. Nadeau, J.F. Bussiere, and G. Van Drunen, On the Relation Between Ultrasonic Attenuation and Fracture Toughness in Type 403 Stainless Steel, Mat. Eval. 43(1):101 (1984).Google Scholar
  21. 21.
    A. Wickberg, G. Gusyafsson, and L.E. Larson, “Microstructural Effects on the Fatigue Properties of a Cast Al7SiMg Alloy (A356)”, SAE Paper #840121, Warrendale (1984).CrossRefGoogle Scholar
  22. 22.
    K. Lewis, S.W. Wang, and L. Adler, Ultrasonic Characterization of Aluminum Cast Materials, in: “Review of Progress in Quantitative NDE”, Vol. 3B, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York (1984).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. N. Sinclair
    • 1
  • H. Eng
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of TorontoCanada

Personalised recommendations