Advertisement

Mutant Receptors for Low Density Lipoprotein in Familial Hypercholesterolemia

  • Wolfgang J. Schneider
Part of the NATO ASI Series book series (NSSA, volume 133)

Abstract

The concept of receptor-mediated metabolism of lipoproteins emerged from studies initiated in 1973 on human skin fibroblasts grown in culture1. These experiments were designed to elucidate the normal function of low density lipoprotein (LDL), about which little was known at that time. Biochemical studies showed that a specific cell surface receptor, the LDL receptor, mediates the binding, uptake and degradation of LDL, thus supplying almost all cells in the body with cholesterol. Detailed insight into the molecular mechanisms underlying this complex process was obtained from studies with fibroblasts derived from patients with the phenotype of homozygous familial hypercholesterolemia (FH). As in many other biological systems, the expression of a disease state in a defined cellular system was essential to the discovery of the causal factor: FH is now one of the best characterized genetic diseases at the molecular level. As will be outlined below, in FH several groups of mutations occur naturally in the structural gene for the LDL receptor which disrupt its normal function and lead to severe hypercholesterolemia, producing myocardial infarctions and premature atherosclerosis. Thus, the important role of lipoprotein receptors in normal physiology is underscored by the dramatic consequences of their functional absence.

Keywords

Familial Hypercholesterolemia Familial Hypercholesterolemia Homozygous Familial Hypercholesterolemia Mature Receptor WHHL Rabbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Brown, and J.L. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 71:788–792 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    M.S. Brown, S.E. Dana, and J.L. Goldstein, J. Biol. Chem. 249:789–796 (1974).PubMedGoogle Scholar
  3. 3.
    J.L. Goldstein, S.E. Dana, and M.S. Brown, Proc. Natl. Acad. Sci. U.S.A. 71:4288–4292 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    M.S. Brown, and J.L. Goldstein, Cell 6:307–316 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    M.S. Brown, and J.L. Goldstein, Science 191:150–154 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    J.L. Goldstein, and M.S. Brown, Curr. Topics Cell. Reg. 11:147–181 (1976).Google Scholar
  7. 7.
    J.L. Goldstein, and M.S. Brown, Ann. Rev. Biochem. 46: 897–930 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    J.L. Goldstein, and M.S. Brown, J. Biol. Chem. 249:5153–5162 (1974).PubMedGoogle Scholar
  9. 9.
    D.S. Fredrickson, J.L. Goldstein, and M.S. Brown, in: “The Metabolic Basis of Inherited Disease,” J.B. Wyngaarden, and D.S. Fredrickson, eds., McGraw-Hill, New York (1978).Google Scholar
  10. 10.
    J.L. Goldstein, and M.S. Brown, John Hopkins Med. J. 143:8–16 (1978).Google Scholar
  11. 11.
    A.K. Khachadurian, Am. J. Med. 37:402–407 (1964).PubMedCrossRefGoogle Scholar
  12. 12.
    J.L. Goldstein, S.E. Dana, G.Y. Brunschede, and M.S. Brown, Proc. Natl. Acad. Sci. U.S.A. 72:1092–1096 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Tolleshaug, J.L. Goldstein, W.J. Schneider, and M.S. Brown, Cell 30:715–724 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Tolleshaug, K.K. Hobgood, M.S. Brown and J.L. Goldstein, Cell 32:941–951 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    J.L. Goldstein, and M.S. Brown, in: “The Metabolic Basis of Inherited Disease,” J.B. Stanbury, J.B. Wyngaardon, and D.S. Fredrickson, et al., eds., McGraw-Hill, New York (1983).Google Scholar
  16. 16.
    J. Slack, and N.C. Nevin, J. Med. Genet. 5:4–8 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    N.J. Stone, R.I. Levy, D.S. Fredrickson, and J. Verber, Circulation 49:476–488 (1974).PubMedGoogle Scholar
  18. 18.
    T. Yamamoto, CG. Davis, M.S. Brown, W.J. Schneider, M.L. Casey, J.L. Goldstein, and D.W. Russell, Cell 39:27–38 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    D.W. Russell, W.J. Schneider, T. Yamamoto, K.L. Luskey, M.S. Brown, and J.L. Goldstein, Cell 37:577–585 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    T.C. Südhof, J.L. Goldstein, M.S. Brown, and D.W. Russell, Science 228:815–822 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    T.L. Innerarity, K.H. Weisgraber, K.S. Arnold, S.C. Rall, Jr., and R.W. Mahley, J. Biol. Chem. 259:7261–7267 (1984).PubMedGoogle Scholar
  22. 22.
    T.J. Knott, S.C. Rall, Jr., T.L. Innerarity, S.F. Jacobson, M.S. Urdea, B. Levy-Wilson, L.M. Powell, R.J. Pease, R. Eddy, H. Nakai, M. Byers, L.M. Priestly, E. Robertson, L.B. Rall, C. Betsholtz, T.B. Shows, R.W. Mahley, and J. Scott, Science 230:37–43 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    J.L. Goldstein, M.S. Brown, R.G.W. Anderson, D.W. Russell, and W.J. Schneider, Ann. Rev. Cell Biol. 1:1–39 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    R.W. Mahley, T.L. Innerarity, Biochim. Biophys. Acta 737:197–222 (1983).PubMedGoogle Scholar
  25. 25.
    T.L. Innerarity, and R.W. Mahley, Biochemistry 17:1440–1447 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    R.E. Pitas, T.L. Innerarity, and R.W. Mahley, J. Biol. Chem. 255:5454–5460 (1980)PubMedGoogle Scholar
  27. 27.
    S.K. Basti, J.L. Goldstein, R.G.W. Anderson, and M.S. Brown, Proc. Natl. Acad. Sci. U.S.A. 73:3178–3182 (1976).CrossRefGoogle Scholar
  28. 28.
    W.J. Schneider, U. Beisiegel, J.L. Goldstein, and M.S. Brown, J. Biol. Chem. 257:2664–2673 (1982).PubMedGoogle Scholar
  29. 29.
    J. Scott, M. Urdea, M. Quiroga, R. Sanchez-Pascador, N. Fong, M. Selby, W.J. Rutter, and G.I. Bell, Science 221:236–240 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Gray, T.J. Dull, and A. Ullrich, Nature 303:722–725 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    R.F. Doolittle, D.-F. Feng, and M.S. Johnson, Nature 307:558–566 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    R.D. Cummings, S. Kornfeld, W.J. Schneider, K.K. Hobgood, H. Tolleshaug, M.S. Brown and J.L. Goldstein, J. Biol. Chem. 258:15261–15273 (1983).PubMedGoogle Scholar
  33. 33.
    C.G. Davis, A. Elhammer, D.W. Russell, W.J. Schneider, S. Kornfeld, M.S. Brown, and J.L. Goldstein, J. Biol. Chem., in press (1986).Google Scholar
  34. 34.
    U. Beisiegel, W.J. Schneider, J.L. Goldstein, R.G.W. Anderson, and M.S. Brown, J. Biol. Chem. 256:11923–11931 (1981).PubMedGoogle Scholar
  35. 35.
    W.J. Schneider, J.L. Goldstein, and M.S. Brown, Methods Enzymol. 109:405–417 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    W.J. Schneider, M.S. Brown, and J.L. Goldstein, Mol. Biol. Med. 1:355–367 (1983).Google Scholar
  37. 37.
    M.A. Lehrman, J.L. Goldstein, M.S. Brown, D.W. Russell, and W.J. Schneider, Cell 41:735–743 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    M.S. Brown, and J.L. Goldstein, Cell 9:663–674 (1976).PubMedCrossRefGoogle Scholar
  39. 39.
    J.L. Goldstein, M.S. Brown, and N.J. Stone, Cell 12:629–641 (1977).PubMedCrossRefGoogle Scholar
  40. 40.
    C.G. Davis, M.A. Lehrman, D.W. Russell, R.G.W. Anderson, M.S. Brown, and J.L. Goldstein, Cell 45:15–24 (1986).PubMedCrossRefGoogle Scholar
  41. 41.
    M.A. Lehrman, W.J. Schneider, T. Südhof, M.S. Brown, J.L. Goldstein, and D.W. Russell, Science 227:140–146 (1985).PubMedCrossRefGoogle Scholar
  42. 42.
    Y. Miyake, S. Tajima, T. Yamamura, and A. Yamamoto, Proc. Natl. Acad. Sci. U.S.A. 78:5151–5155 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Wolfgang J. Schneider
    • 1
  1. 1.Department of BiochemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations