Advertisement

Nicotinic Acetylcholine Receptor and Myasthenia Gravis Studied by Anti-Receptor Monoclonal Antibodies

  • Socrates J. Tzartos
Part of the NATO ASI Series book series (NSSA, volume 133)

Abstract

Antibodies to the nicotinic acetylcholine receptor (AChR) cause the disease myasthenia gravis (MG). Both the molecule and the disease have been extensively studied and serve as models for similar systems. Monoclonal antibodies (mAbs) to the AChR have been used for several years as probes for the study of the AChR and the MG. In the introduction, some general information will be presented on the AChR, the disease and the mAbs.

Keywords

Acetylcholine Receptor Nicotinic Acetylcholine Receptor Electric Organ Antigenic Modulation AChR Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Conti-Tronconi, and M. Raftery, The nicotinic cholinergic receptor, Ann. Rev. Biochem. 51:491 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Karlin, The anatomy of a receptor, Neurosci. Comm. 1:111 (1983).Google Scholar
  3. 3.
    J.-P. Changeux, A. Devillers-Thiery, and P. Chemouilli, Acetylcholine receptor: an allosteric protein, Science, 225:1335 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    R.M. Stroud, and J. Finer-Moore, Acetylcholine receptor structure, function, and evolution, Ann. Rev. Cell Biol. 1:317 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Noda, et al, Structural homology of Torpedo Californica acetylcholine receptor subunits, Nature 302:528 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Claudio, M. Ballivet, J. Patrick, and S. Heinemann, Nucleotide and deduced amino acid sequences of Torpedo Californica acetylcholine receptor gamma-subunit, Proc. Natl. Acad. Sci. USA, 80:1111 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Mishina, et al, Expression of functional acetylcholine receptor from cloned cDNAs, Nature, 307:604 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Takai, et al, Primary structure of gamma-subunit precursor of calf-muscle acetylcholine receptor deduced from the cDNA sequense, Eur. J. Biochem. 143:109 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    M. M. White, K.M. Mayne, H.A. Lester, and N. Davidson, Mouse-Torpedo hybrid acetylcholine receptors: Functional homology does not equal sequence homology, Proc. Natl. Acad. Sci. USA, 82:4852 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Patrick, and J. Lindstrom, Autoimmune responce to acetylcholine receptors, Science, 180:871 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    D. M. Fambrough, D.B. Drachman, and S. Satiamurti, Neuromuscular junction in myasthenia gravis: Decreased acetylcholine receptors, Science, 182:293 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Drachman, Myasthenia gravis: Immunobiology of a receptor disorder, Trends Neurosci. 6:446 (1983).CrossRefGoogle Scholar
  13. 13.
    A. G. Engel, Myasthenia gravis and myasthenic syndromes, Ann. Neurol. 16:519 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Lindstrom, Immunobiology of myasthenia gravis, experimental autoimmune myasthenia gravis, and Lambert-Eaton syndrome, Ann. Rev. Immunol. 3:109 (1985).CrossRefGoogle Scholar
  15. 15.
    S. Heinemann, S. Bevan, R. Kullberg, J. Lindstrom, and J. Rice, Modulation of the acetylcholine receptor by anti-receptor antibodies, Proc. Natl. Acad. Sci. USA, 74:3090 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    I. Kao, and D.P. Drachman, Myasthenic immunoglobulin accelerates acetylcholine receptor degradation, Science, 197:527 (1977).CrossRefGoogle Scholar
  17. 17.
    C. M. Gomez, and D.P. Richman, Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia, Proc. Natl. Acad. Sci. USA, 80:4089 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    J. M. Lindstrom, M.E. Seybold, V.A. Lennon, S. Whittingham, and D. Duane, Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates and diagnostic value, Neurology, 26:1054 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Hohlfeld, K.V. Toyka, K. Heininger, H. Grosse-Wilde, and I. Kalies, Autoimmune human T lymphocytes specific for acetylcholine receptor, Nature, 310:244 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Kohler, and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256:495 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    C. Milstein, From antibody structure to immunological diversification of immune response, Science, 231:1261 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    S. J. Tzartos, D.E. Rand, B.E. Einarson, and J.M. Lindstrom, Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies, J. Biol. Chem. 256:8635 (1981).PubMedGoogle Scholar
  23. 23.
    S. J. Tzartos, Monoclonal antibodies as probes of the acetylcholine receptor and myasthenia gravis, Tr. Biochem. Sci. 9:63 (1984).CrossRefGoogle Scholar
  24. 24.
    M. F. Greaves, ed. “Monoclonal antibodies to receptors. Probes for receptor structure and function,” in the series “Receptor and recognition” vol. B17, Chapman and Hall, London, (1984).Google Scholar
  25. 25.
    J. C. Venter, C.M. Fraser, and J. Lindstrom, eds. “Monoclonal and anti-idiotypic antibodies. Probes for receptor structure and function in Receptor Biochemistry and methodology” Vol.4, Alan R. Liss, N.Y (1984).Google Scholar
  26. 26.
    S. J. Tzartos, and J.M. Lindstrom, Monoclonal antibodies to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. USA, 77:755 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Tzartos, L. Langeberg, S. Hochschwender, and J. Lindstrom, Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor, FEBS Lett. 158:116 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Tzartos, L. Langeberg, S. Hochschwender, L. Swanson, J. Lindstrom, Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: species, subunit and region specificity, J. Neuroimmunol. 10:235 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    P. Sargent, B. Hedges, L. Tsavaler, L. Clemmons, S.J. Tzartos and J. Lindstrom, The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-recting monoclonal antibodies, J. Cell Biol. 98:609 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    K. Soteriadou, A. Tzinia, and S. Tzartos, Common antigenic determinants between acetylcholine receptor and protozoan membranes, in: “Mechanism of Action of the Nicotinic Acetylcholine Receptor,” A. Maelicke, ed. Springer-Verlag, H (1986).Google Scholar
  31. 31.
    W. J. Gullick, and J.M. Lindstrom, Structural similarities between acetylcholine receptors from fish electric organs and mammalian muscle, Biochemistry, 21:4563 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    W. J. Gullick, S.J. Tzartos, and J. Lindstrom, Monoclonal antibodies as probes of acetylcholine receptor structure. I. Peptide mapping, Biochemistry, 20:2173 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    W. Gullick, and J. Lindstrom, Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo Californica, Biochemistry, 22:3312 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Ratnam, P. Sargent, V. Sarin, J.L. Fox, D. Le Nguyen, J. Rivier, M. Criado, and J. Lindstrom, Location of antigenic determinants on primary sequences of the subunits of the nicotinic acetylcholine receptor by peptide mapping. Biochemistry, 25:2621 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    M. A. Juillerat, T. Barkas, and S.J. Tzartos, Antigenic sites of the nicotinic acetylcholine receptor cannot be predicted from the hydrophilicity profile, FEBS Lett. 168:143 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Ratnam, D. Le Nguyen, J. Rivier, P. Sargent, and J. Lindstrom, Transmembrane topography of the nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity profile. Biochemistry, 25:2633 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    H. M. Geysen, Antigen-antibody interactions at the molecular level: adventures in peptide synthesis, Imm. Today, 6:364 (1985).Google Scholar
  38. 38.
    T. Barkas, A. Mauron, B. Roth, J.M. Gabriel, S.J. Tzartos, M. Juillerat, C. Alliod, and M. Ballivet, Localization of the main immunogenic region and toxin binding site of the nicotinic acetylcholine receptor, Ann. N.Y. Acad. Sci. in press (1986).Google Scholar
  39. 39.
    S. J. Tzartos, and A. Kordossi, acetylcholine receptor conformation probed by subunit-specific monoclonal antibodies, in “Mechanism of Action of the nicotinic acetylcholine receptor,” A. Maelicke, ed. Springer-Verlag, Heidelberg, in press (1986).Google Scholar
  40. 40.
    A. Kordossi, and S.J. Tzartos, Mapping the cytoplasmic side of the Torpedo acetylcholine receptor by monoclonal antibodies, in preparation, (1986).Google Scholar
  41. 41.
    S. J. Tzartos, M. Seybold, and J. Lindstrom, Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies, Proc. Natl. Acad. Sci. USA, 879:188 (1982).CrossRefGoogle Scholar
  42. 42.
    B. Garabedian, and E. Morel, Monoclonal antibodies against the human acetylcholine receptor, Biochem. Biophys. Res. Commun. 113:1 (1983).CrossRefGoogle Scholar
  43. 43.
    P. Whiting, A. Vincent, and J. Newsom-Davis, Monoclonal antibodies to Torpedo acetylcholine receptor. Characterization of antigenic determinants within the cholinergic binding site. Eur. J. Biochem. 150:533 (1985).PubMedCrossRefGoogle Scholar
  44. 44.
    M. Raftery, M. Hunkapiller, C. Strader, and, L. Hood, Acetylcholine receptor: Complex of homologous subunits, Science, 208:1454 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    K. Stefansson, M.E. Dieperink, D.P. Richman, CM. Gomez, and L.S. Marton, Sharing of antigenic determinants between the nicotinic acetylcholine receptor and proteins in Escherichia coli, Proteus Vulgaris and Klebsiella Pneumoniae, N. Engl. J. Med., 312:221 (1985).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Pizzighella, A.S. Gordon, M.C. Souroujon, D. Mochly-Rosen, A. Sharp, and S. Fuchs, An anti-acetylcholine receptor monoclonal antibody cross-reacts with phosvitin, FEBS Lett. 159:246 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    K. Soteriadou, A. Tzinia, and S.J. Tzartos, in preparation, (1986).Google Scholar
  48. 48.
    S. J. Tzartos, and J.-P. Changeux, High affinity binding of α-bungarotoxin to the purified a subunit and its 27K proteolytic peptide from Torpedo acetylcholine receptor. Requirement for sodium dodesyl sulfate, EMBO J. 2:381 (1983).PubMedGoogle Scholar
  49. 49.
    S. J. Tzartos, and J.-P. Changeux, Lipid-dependent recovery of α-bungarotoxin and monoclonal antibody binding to the purified α-subunit from Torpedo marmorata acetylcholine receptor, J. Biol. Chem. 259:11512 (1984).PubMedGoogle Scholar
  50. 50.
    J. Lindstrom, M. Criado, S. Hochschwender, J. Fox, and V. Sarin, Immunochemical tests of acetylcholine receptor subunit models, Nature, 311:573 (1984).PubMedCrossRefGoogle Scholar
  51. 51.
    M. Criado, S. Hochschwender, V. Sarin, J. Fox, and J. Lindstrom, Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits, Proc. Natl. Acad. Sci. USA, 82:2004 (1985).Google Scholar
  52. 52.
    J. Lindstrom, S.J. Tzartos, and W. Gullick, Structure and function of the acetylcholine receptor molecule studied using monoclonal antibodies, Ann. N.Y. Acad. Sci. 377:1 (1981).PubMedCrossRefGoogle Scholar
  53. 53.
    K. Wan, and J. Lindstrom, Effects of monoclonal antibodies on the function of purified acetylcholine receptor from Torpedo Californica reconstituted into liposomes, Biochemistry, 24:1212 (1985).PubMedCrossRefGoogle Scholar
  54. 54.
    B. M. Conti-Tronconi, S.M. Dunn, I.A. Barnard, J.O. Dolly, F.A. Lay, N. Ray, and M.A. Raftery, Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins, Proc. Natl. Acad. Sci. USA, 82:5208 (1985).PubMedCrossRefGoogle Scholar
  55. 55.
    J. Boulter, K. Evans, D. Goldman, G. Martin, D. Treco, S. Heinemann and J. Patrick, Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit, Nature, 319:368 (1986).PubMedCrossRefGoogle Scholar
  56. 56.
    L. Swanson, J. Lindstrom, S.J. Tzartos, L. Schmued, D.D. O’Leary, and W.M. Cowan, Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the middbrain of the chich, Proc. Natl. Acad. Sci. USA, 80:4532 (1983).PubMedCrossRefGoogle Scholar
  57. 57.
    P. Whiting, and J. Lindstrom, Purification and characterization of a nicotinic acetylcholine receptor from chich brain, Biochemistry, 25:2082 (1986).PubMedCrossRefGoogle Scholar
  58. 58.
    J. M. Henley, M. Mynlieff, J. Lindstrom, and R.E. Oswald, Interaction of monoclonal antibodies to electroplaque acetylcholine receptors with the alpha-bungarotoxin binding site of goldfish brain, Brain Res. 364:405 (1986).PubMedCrossRefGoogle Scholar
  59. 59.
    M. Y. Momoy, and V.A. Lennon, Purification and biochemical characterization of nicotinic acetylcholine receptors of human muscle, J. Biol. Chem. 257:12, 757 (1982).Google Scholar
  60. 60.
    C. Mochly-Rosen, and S. Fuchs, Monoclonal anti-acetylcholine receptor antibodies directed against the cholimergic binding site, Biochemistry, 20:5920 (1981).PubMedCrossRefGoogle Scholar
  61. 61.
    D. Watters, and A. Maelicke, Organization of ligand binding sites at the acetylcholine receptor: A study with monoclonal antibodies, Biochemistry, 22:1811 (1983).PubMedCrossRefGoogle Scholar
  62. 62.
    M. Mihovilovic, and D.P. Richman, Modification of alpha-bungarotoxin and cholinergic ligand-binding properties of Torpedo acetylcholine receptor by an anti-acetylcholine receptor monoclonal antibody, J. Biol. Chem. 259:15051 (1984).PubMedGoogle Scholar
  63. 63.
    S. J. Tzartos, D. Sophianos, K. Zimmermann, and A. Starzinski-Powitz, Antigenic modulation of human muscle acetylcholine receptor by myasthenic sera. Serum titer determines receptor internalization, J. Immunol. 136:3231 (1985).Google Scholar
  64. 64.
    J. P. Merlie, R. Sebbane, S.J. Tzartos, and J. Lindstrom, Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells, J. Biol. Chem. 257:2694 (1982).PubMedGoogle Scholar
  65. 65.
    R. Sebbane, G. Clokey, J.P. Merlie, S.J. Tzartos, and J. Lindstrom, Characterization of the mRNA for mouse muscle acetylcholine receptor alpha-subunit by quantitative translation in vitro, J. Biol. Chem. 258:3294 (1983).PubMedGoogle Scholar
  66. 66.
    J. P. Merlie, Biogenesis of the acetylcholine receptor, a multisubunit integral membrane protein, Cell, 36:573 (1984).PubMedCrossRefGoogle Scholar
  67. 67.
    J. Giraudat, A. Devillers-Thiery, C. Auffray, F. Rougeon, and J.P. Changeux, Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor, EMBO J. 1:713 (1982).PubMedGoogle Scholar
  68. 68.
    T. Barkas, A. Mauron, B. Roth, C. Alliod, S.J. Tzartos, and M. Ballivet, Expression cloning and fusion proteins as tools to study receptor structure, in “Mechanism of Action of the nicotinic acetylcholine receptor,” A. Maelicke, ed. Springer-Verlag Heidelberg, in press (1986).Google Scholar
  69. 69.
    B. C.G. Schalke, W.E.F. Klinkert, H. Wekerle, and D.S. Dwyer, Enhanced activation of a T cell line specific for acetylcholine receptor by using anti-acetylcholine receptor monoclonal antibodies plus receptors, J. Immunol. 134:3643 (1985).PubMedGoogle Scholar
  70. 70.
    Y. Zhang, S.J. Tzartos, B. Schalke, A. Melms, and H. Wekerle, Interaction between acetylcholine receptor-specific T and B lymphocytes: Antigen presentation by B hybridoma cells and enhancing effect of monoclonal antibodies on T cell activation, Ann. N.Y. Acad. Sci. in press (1986).Google Scholar
  71. 71.
    R. Hohlfeld, K. Toyka, M. Michels, K. Heininger, B. Conti-Tronconi, and S.J. Tzartos, Acetylcholine receptor-specific human T-lymphocyte lines, Ann. N.Y. Acad. Sci. in press (1986).Google Scholar
  72. 72.
    S. J. Tzartos, S. Hochschwender, and J. Lindstrom, Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor, in preparation (1986).Google Scholar
  73. 73.
    B. Conti-Tronconi, S.J. Tzartos, and J. Lindstrom, Monoclonal antibodies as probes of acetylcholine receptor structure. II. Binding to native receptor, Biochemistry, 20:2181 (1981).PubMedCrossRefGoogle Scholar
  74. 74.
    S. J. Tzartos, D. Sophianos, and A. Efthimiadis, Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera. J. Immunol. 134:2343 (1985).PubMedGoogle Scholar
  75. 75.
    S. J. Tzartos, and A. Starzinski-Powitz, Decrease in acetylcholine receptor content of human myotube cultures mediated by monoclonal antibodies to α, β and γ subunits, FEBS Lett. 196:91 (1986).PubMedCrossRefGoogle Scholar
  76. 76.
    J. Killen, S. Hochschwender, and J. Lindstrom, The main immunogenic region of acetylcholine receptors does not provoke the formation of antibodies to a predominant idiotype, J. Neuroimmunol. 9:229 (1984).CrossRefGoogle Scholar
  77. 77.
    A. Bionda, M. De Baets, S.J. Tzartos, J. Lindstrom, and W.O. Weigle, Spectrotypic analysis of antibodies to acetylcholine receptors in experimental autoimmune myasthenia gravis, Clin. and Exp. Immunol. 57:41 (1984).Google Scholar
  78. 78.
    J. Tainer, E. Getzoff, Y. Patterson, A. Olson, and R.A. Lerner, The atomic mobility component of protein antigenicity, Ann. Rev. Immunol. 3:501 (1985).CrossRefGoogle Scholar
  79. 79.
    A. Brisson, and P. Unwin, Quaternary structure of the acetylcholine receptor, Nature, 315:474 (1985).PubMedCrossRefGoogle Scholar
  80. 80.
    B. Einarson, B. Gullick, B. Conti-Tronconi, and J. Lindstrom, Subunit composition of fetal calf muscle nicotinic acetylcholine receptor, Biochemistry, 21:5295 (1982).PubMedCrossRefGoogle Scholar
  81. 81.
    D. P. Richman, C. Gomez, P. Berman, S. Burres, and B.G.W. Arnason, Monoclonal anti-acetylcholine receptor antibodies can cause experimental myasthenia, Nature, 286:738 (1980).PubMedCrossRefGoogle Scholar
  82. 82.
    V. A. Lennon, and E.H. Lambert, Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors, Nature, 285:238 (1980).PubMedCrossRefGoogle Scholar
  83. 83.
    M. Souroujon, D. Mochly-Rosen, A. Gordon, and S. Fuchs, Interaction of monoclonal antibodies to Torpedo acetylcholine receptor with the receptor of skeletal muscle, Muscle and Nerve, 6:303 (1983).PubMedCrossRefGoogle Scholar
  84. 84.
    J. Lindstrom, M. Campbell, and B. Nave, Specificities of antibodies to acetylcholine receptors, Muscle Nerve, 1:140 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Socrates J. Tzartos
    • 1
  1. 1.Dep. Biochem.Hellenic Pasteur InstituteAthensGreece

Personalised recommendations