Immunological Stimulation of Mast Cells Degranulation: Role of Cytosolic pH, Na+ and Ca+2 Ions

  • I. Pecht
  • R. Schweitzer-Stenner
  • R. Gertler
  • M. Wolf
  • Y. Zisman
  • B. Reck
Part of the NATO ASI Series book series (NSSA, volume 133)


Transient changes in the free cytosolic concentrations of essential cations such as protons, sodium or calcium are emerging as cellular signalling elements. Evidence for their involvement in vital processes such as cell-proliferation and differentiation and the coupling between excitation and contraction or stimulus and secretion in respective muscle or nerve cells are well documented1–6. Changes in cytosolic steady-state concentrations of these cations may be caused by net influx into the cytosol from the extracellular medium or recruitement from intracellular stores. Depending on concentration gradients existing for specific ions, exchange or net influx processes prevail. Thus, for example, stimulation of fibroblasts by growth factors was shown to activate a Na+/H+ exchanger leading to a net uptake of sodium ions and protons efflux1–3, 7. For a wide range of cells, e.g. B or T-lymphocytes, one of the earliest events following stimulation is a transient rise in cytosolic free Ca+2 which is due either to release from cellular stores or to influx via specific ion channels opened in their plasma membranes.5,6,8


Calcium Signal Serotonin Release Transient Rise Induce Release Tyrode Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Rozengurt, Adv. Enzymol. Regul. 19:61 (1981).CrossRefGoogle Scholar
  2. 2.
    W. Moolenaar, R. Tsien, P. Van der Saag and S. de Laat, Nature 304:645 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Shuldiner and E. Rozengurt, Proc. Natl. Acad. Sci. USA 79:7778 (1982).CrossRefGoogle Scholar
  4. 4.
    T.M. Connolly and L.E. Limbird, Proc. Natl. Acad. Sci. USA 80:5320 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Weiss, J. Imboden, D. Shoback and J. Stobo, Proc. Natl. Acad. Sci.USA 81:4169 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Alcover, M.J. Weiss, F.J. Daley and E.L. Reinherz, Proc. Natl. Acad. Sci. USA 83:2614.Google Scholar
  7. 7.
    G. L’Alleimain, A. Franchi, E. Cragoe Jr. and J. Pouyssegur, J. Biol. Chem. 259:4313 (1984).Google Scholar
  8. 8.
    A. Corcia, R. Schweitzer-Stenner, I. Pecht and B. Rivnay, EMBO J. 5:849 (1986).PubMedGoogle Scholar
  9. 9.
    T. Ishizaka and K. Ishizaka, Prog. Allergy 34:188 (1984).PubMedGoogle Scholar
  10. 10.
    J.L. Mongar and H.O. Schild, J. Physiol. 140:272 (1958).PubMedGoogle Scholar
  11. 11.
    J.C. Foreman, M.B. Hallet and J.L. Mongar, J. Physiol. 271:193 (1977).PubMedGoogle Scholar
  12. 12.
    R.Y. Tsien, Biochemistry 19:2396 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    M.A. Beaven, J. Rogers, J.P. Moore, T.R. Hesketh, G.A. Smith and J. Metcalfe, J. Biol. Chem. 259:7129 (1984).PubMedGoogle Scholar
  14. 14.
    R. Sagi-Eisenberg and I. Pecht, Immunol. Lett. 8:237 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Sagi-Eisenberg and I. Pecht, Nature 313:59 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    E.L. Barsumian, C. Isersky, M.G. Petrino and R.P. Siraganian, Europ.J. Immunol. 11:317 (1981).CrossRefGoogle Scholar
  17. 17.
    J.D. Taurog, C. Fewtxell and E. Becker, J. Immunol. 122:2150 (1979).PubMedGoogle Scholar
  18. 18.
    R.Y. Tsien, T. Pozzan and T.J. Rink, J. Cell. Biol. 94:325 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    T.J. Rink, R.Y. Tsien and T.J. Pozzan, J. Cell. Biol. 95:189 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    D.M. Segal, J.D. Taurog and H. Metzger, Proc. Natl. Acad. Sci. USA 74:2993 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    A.K. Menon, D. Holowka and B. Baird, J. Cell. Biol. 98:577 (1984).PubMedCrossRefGoogle Scholar
  22. 22..
    R. Schweitzer-Stenner, E. Luescher, A. Licht and I. Pecht, (1986), submitted.Google Scholar
  23. 23.
    Y. Nishizuka, Science 233:305 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Katakami, K. Kaibuchi, M. Sawamura, Y. Takai and Y. Nishizuka, Biochem. Biophys. Res. Commun. 121:573 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Murer, U. Hopfer and R. Kinne, Biochem. J. 154:597 (1976).PubMedGoogle Scholar
  26. 26.
    P. Cala, J. Gen. Physiol. 76:683 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Paris and J. Pouyssigur, J. Biol. Chem. 258:3503 (1983).PubMedGoogle Scholar
  28. 28.
    A. Roos and W.F. Boron, Physiol. Rev. 61:296 (1981).PubMedGoogle Scholar
  29. 29.
    S. Grinstein, S. Cohen, J.D. Goetz, A. Rothstein and E.A. Gelfand, Proc. Natl. Acad. Sci. USA 82:1429 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    D.J. Benos, Am. J. Physiol. 242:C131 (1982).PubMedGoogle Scholar
  31. 31.
    S. Grinstein, S. Cohen and A. Rothstein, J. Gen. Physiol. 83:341 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    L.C. Cantley, Curr. Top. Bioenerg. 11:201 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • I. Pecht
    • 1
  • R. Schweitzer-Stenner
    • 1
  • R. Gertler
    • 1
  • M. Wolf
    • 1
  • Y. Zisman
    • 1
  • B. Reck
    • 1
  1. 1.Department of Chemical ImmunologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations