Advertisement

Structure and Function of Phosphoinositides in Membranes and Cells

  • Karel W. A. Wirtz
  • Peter A. van Paridon
  • Anton J. W. G. Visser
  • Ben de Kruijff
Part of the NATO ASI Series book series (NSSA, volume 133)

Abstract

Phosphatidylinositol (PI) and its phosphorylated derivatives phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) have caught the eye and fired the imagination of the scientific community. In a recent review (1) Hawthorne underscored the air of excitement by stating :”In 1960 inositol phospholipids were only for the connoiseur or the addict, but thanks to the association with receptor activation and the resulting interest of the pharmacologists they now represent something of a growth industry”. Indeed, particularly during the past ten years we have seen an ever-increasing flow of studies dealing with the key role of phosphoinositides in the stimulus-induced signal transduction across the plasma membrane (2–4). One is referred to the paper by Williamson and Hansen for a current view on the subject of receptor-linked breakdown of PIP2 yielding inositol 1,4,5-trisphosphate (IP3) and diglyceride as the intracellular second messengers. We will touch upon various aspects of this process only as far as they are related to the properties and structural functions of phosphoinositides in membranes which form the main topics of discussion in this chapter.

Keywords

Fluorescence Decay Rotational Correlation Time Lifetime Component Variant Surface Glycoprotein Probe Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.N. Hawthorne, Bioscience Rep. 3, 887–904 (1983).CrossRefGoogle Scholar
  2. 2.
    Y. Nishizuka, Nature 308, 693–698 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    M.J. Berridge, Biochem. J. 220, 345–360 (1984).PubMedGoogle Scholar
  4. 4.
    L.E. Hokin, Ann. Rev. Biochem. 54, 205–235 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Somerharju and K.W.A. Wirtz, Chem. Phys. Lip. 30, 81–91 (1982).CrossRefGoogle Scholar
  6. 6.
    L.A. Sklar, B.S. Hudson and R.D. Simoni, Proc. Natl. Acad. Sci. U.S.A. 72, 1649–1653 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    L.A. Sklar, B.S. Hudson and R.D. Simoni, Biochemistry 16, 819–828 (1977)PubMedCrossRefGoogle Scholar
  8. 8.
    L.A. Sklar, G.P. Miljanich and E.A. Dratz, Biochemistry 18, 1707–1716 (1979)PubMedCrossRefGoogle Scholar
  9. 9.
    F. Schroeder, J.F. Holland and P.R. Vagelos, J. Biol. Chem. 251, 6739–6746 (1976).PubMedGoogle Scholar
  10. 10.
    F. Schroeder, Eur. J. Biochem. 132, 509–516 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    A.J. Waring, P. Glatz and J.M. Vanderkooi, Biochim. Biophys. Acta 557, 391–398 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Welti and D.F. Silbert, Biochemistry 21, 5685–5689 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    L.A. Sklar, B.S. Hudson and R.D. Simoni, Biochemistry 16, 5100–5108 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    C.B. Berde, B.S. Hudson, R.D. Simoni and L.A. Sklar, J. Biol. Chem. 254, 391–400 (1979)PubMedGoogle Scholar
  15. 15.
    D. Kimelman, E.S. Tecoma, P.K. Wolber, B.S. Hudson, W.T. Wickner and R.D. Simoni, Biochemistry 18, 5874–5880 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    L.A. Sklar, B.S. Hudson, M. Petersen and J. Diamond, Biochemistry 16, 813–819 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    P.K. Wolber and B.S. Hudson, Biochemistry 20, 2800–2810 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    P.K. Wolber and B.S. Hudson, Biophys. J. 37, 253–262 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    H.W. Chang and E. Bock, Biochemistry 18, 172–179 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Rousselet, P.F. Devaux and K.W.A. Wirtz, Biochem. Biophys. Res. Commun. 90, 871–877 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    A. van Hoek, and A.J.W.G. Visser, Anal. Instr. 14, 359–378 (1985)CrossRefGoogle Scholar
  22. 22.
    A.J.W.G. Visser, T. Ykema, A. van Hoek, D.J. O Kane and J. Lee, Biochemistry 24, 1489–1496 (1985)PubMedCrossRefGoogle Scholar
  23. 23.
    H. Ikezawa, M. Yamanegi, R. Taguchi, T. Miyashita and T. Ohyabu, Biochim. Biophys. Acta 450, 154–164 (1976).PubMedGoogle Scholar
  24. 24.
    M.G. Low and J.B. Finean, Biochem. J. 167, 281–284 (1977).PubMedGoogle Scholar
  25. 25.
    M.G. Low and J.B. Finean, FEBS Lett. 82, 143–146 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    A.H. Futerman, M.G. Low and I. Silman, Neurosci. Lett. 40, 85–89 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    A.H. Futerman, M.G. Low, D.M. Michaelson and I. Silman, J. Neurochem. 45, 1487–1494 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    M.G. Low and J.B. Finean, Biochim. Biophys. Acta 508, 565–570 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    S.D. Shukla, R. Coleman, J.B. Finean and R.H. Michell, Biochem. J. 187, 277–280 (1980).PubMedGoogle Scholar
  30. 30.
    M.G. Low and P.W. Kincade, Nature 318, 62–64 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    M.A.J. Ferguson, M.G. Low and G.A.M. Cross, J. Biol. Chem. 260, 14547–14555 (1985).PubMedGoogle Scholar
  32. 32.
    H.T. He, J. Barbet, J.C. Chaix and C. Goridis, EMBO J. 5, 2489–2494 (1986).PubMedGoogle Scholar
  33. 33.
    M.G. Low, M.A.J. Ferguson, A.H. Futerman and I. Silman, Trends Biochem. Sci. 11, 212–215 (1986).CrossRefGoogle Scholar
  34. 34.
    A.G.D. Tse, A.N. Barclay, A. Watts and A.F. Williams, Science 230, 1003–1008 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    W.L. Roberts and T.L. Rosenberry, Biochem. Biophys. Res. Commun. 133, 621–627 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    D. Hereld, J.L. Krakow, J.D. Bangs, G.W. Hart and P.T. Englund, J. Biol. Chem. 261, 13813–13819 (1986).PubMedGoogle Scholar
  37. 37.
    B.J. Holub _in: “Inositol and Phosphoinositides”, J.E. Bleasdale, J. Eichberg and G. Hauser, eds., pp. 31–47, Humana Press, Clifton, NJ (1985).CrossRefGoogle Scholar
  38. 38.
    Y. Sugiura, Biochim. Biophys. Acta 641, 148–159 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Shibata, J. Uzawa, Y. Sugiura, K. Hayashi and T. Takizawa, Chem, Phys. Lipids 34, 107–113 (1984).CrossRefGoogle Scholar
  40. 40.
    K. Hayashi, M. Muehleisen, W. Probst and H. Rahman, Chem. Phys. Lipids 34, 317–322 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    H. Hauser and R.M.C. Dawson, Eur. J. Biochem. 1, 61–69 (1967)PubMedCrossRefGoogle Scholar
  42. 42.
    B. de Kruyff, P.R. Cullis and G.K. Radda, Biochim. Biophys. Acta 436, 729–740 (1976).CrossRefGoogle Scholar
  43. 43.
    P.A. van Paridon, B. de Kruyff, R. Ouwerkerk and K.W.A. Wirtz, Biochim. Biophys. Acta 877, 216–219 (1986).PubMedGoogle Scholar
  44. 44.
    S. Cerdan, C.A. Hansen, R. Johanson, T. Inubushi and J.R. Williamson, J. Biol. Chem. 261, in press (1986)Google Scholar
  45. 45.
    M. Koter, B. de Kruyff and L.L.M. van Deenen, Biochim. Biophys. Acta 514, 255–263 (1978).PubMedCrossRefGoogle Scholar
  46. 46.
    M.B. Abramson, G. Colacicco, R. Cursi and M.M. Rapport, Biochemistry 7, 1692–1698 (1968).PubMedCrossRefGoogle Scholar
  47. 47.
    P.W.M. van Dijck, B. de Kruyff, A.J. Verkley, L.L.M. van Deenen and J. de Gier, Biochim. Biophys. Acta 512, 84–96 (1978).PubMedCrossRefGoogle Scholar
  48. 48.
    W.H. Moolenaar, L.G.J. Tertoolen and S.W. de Laat, Nature 312, 371–374 (1984).PubMedCrossRefGoogle Scholar
  49. 49.
    J.T. Buckley and J.N. Hawthorne, J. Biol. Chem. 247, 7218–7223 (1972)PubMedGoogle Scholar
  50. 50.
    C.P. Downes, P.T. Hawkins and R.H. Michell, Biochem. Soc. Trans. 10, 250–251 (1982)Google Scholar
  51. 51.
    D. Allan and R.H. Michell, Biochim. Biophys. Acta 508, 277–286 (1978)PubMedCrossRefGoogle Scholar
  52. 52.
    J.E. Ferrell and W.H. Huestis, J. Cell Biol. 98, 1992–1998 (1984)PubMedCrossRefGoogle Scholar
  53. 53.
    R.A. Anderson and R.E. Lovrien, Nature 307, 655–658 (1984)PubMedCrossRefGoogle Scholar
  54. 54.
    I.M. Armitage, D.L. Shapiro, H. Furthmayr and V.T. Marchesi, Biochemistry 16, 1317–1320 (1977)PubMedCrossRefGoogle Scholar
  55. 55.
    R.A. Anderson and V.T. Marchesi, Nature 318, 295–298 (1985)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Karel W. A. Wirtz
    • 1
  • Peter A. van Paridon
    • 1
  • Anton J. W. G. Visser
    • 1
  • Ben de Kruijff
    • 1
  1. 1.Laboratory of Biochemistry and Institute of Molecular BiologyState University of UtrechtUtrechtThe Netherlands

Personalised recommendations