The Role of Electrostatic Forces in Regulating Membrane Conformational Changes Induced by Protein Phosphorylation

  • J. Barber
Part of the NATO ASI Series book series (NSSA, volume 133)


One of the most striking demonstrations of membrane dynamics was made sixteen years ago when it was shown that surface antigens of mouse and human cultured cells were able to intermix when fusion was induced to form heterokaryons (1). Since then it has been shown by a variety of techniques that lateral diffusion of proteins occur in a wide range of membranes including rhodopsin in photoreceptor membranes (2); lectin receptors in myoblasts (3), fibroplasts (4), myotubes (5), glia (6) and neurons (7); surface antigens in mast cells (8) and mouse eggs (9); acetylcholine receptors in myoblasts and myotubes (10); hormone receptors in fibroblasts (11) and integral proteins in erythrocytes (12), mitochondrial (13) and a number of other membranes. For further information see reviews (14–18).


Thylakoid Membrane Lateral Diffusion Fluorescence Recovery After Photobleaching Fluorescence Rise Electrostatic Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Frye, and M. Edidin, J. Cell Sci., 7:319–335 (1970).PubMedGoogle Scholar
  2. 2.
    M. M. Poo and R. A. Cone, Nature 274: 438–440 (1974).CrossRefGoogle Scholar
  3. 3.
    J. Schlessinger, D. E. Koppel, D. Axelrod, K. Jacobson, W. W. Webb, and E. L. Elson, Proc. Natl. Acad. Sci. U.S.A., 73: 2409–2413 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    B. A. Smith, W. R. Clarke, and H. M. McConnell, Proc. Natl. Acad. Sci. U.S.A., 76:5641–5644 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Axelrod, P. Raudin, D. E. Koppel, J. Schlessinger, W. W. Webb, E. L. Elson, and T. R. Podleski, Proc. Natl. Sci. U.S.A., 73:4594–4598 (1976).CrossRefGoogle Scholar
  6. 6.
    Y. Zagyansky, P. Brenda, and J. C. Bisconte, FEBS Lett., 77:206–208 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    S. W. DeLaat, P. T. van der Saag, E. L. Elson, and J. Schlessinger, Biochim. Biophys. Acta, 558:247–250 (1979).CrossRefGoogle Scholar
  8. 8.
    J. Schlessinger, W. W. Webb, E. L. Elson, and H. Metzger, Nature, 264:550–552 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Johnson, and M. Edidin, Nature 272;448–450 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    M. M. Poo, J. W. Lam, N. Orida, and A. W. Chao, Biophys. J., 26:1–22 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Schlessinger, Y. Schechter, P. Cuatreeasas, M. C. Willingham, and I. Pastan, Proc. Natl. Acad. Sci. U.S.A., 75:5353–5357 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    V. Fowler, and D. Branton, J. Cell Biol., 63:100–108 (1977).Google Scholar
  13. 13.
    M. Hochli, and C. R. Hackenbrock, Proc. Natl. Acad. Sci. U.S.A., 76:1236–1240 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Edidin, in: “New Comprehensive Biochemistry” vol 1, pp. 37–82, Elsevier, Amsterdam, (1981).Google Scholar
  15. 15.
    J. Schlessinger and E. L. Elson, Meth. Exp. Phys., 20:197–227 (1982).Google Scholar
  16. 16.
    R. Peters, Naturwissenschaften, 70:294–302 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Axelrod, D. J. Membrane Biol., 75:1–10 (1983)CrossRefGoogle Scholar
  18. 18.
    H.-G. Kapitza and K. A. Jacobson, in: “Techniques for the Analysis of Membrane Proteins” C. I. Ragen and R. J. Cherry, eds. pp. 345–375, Chapman-Hull, London, New York, (1986).CrossRefGoogle Scholar
  19. 19.
    D. Axelrod, D. E. Koppel, J. Schlessinger, E. L. Elson and W. W. Webb, Biophys. J., 16:1055–1069 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    R. J. Cherry, Biochim. Biophys. Acta, 559:289–327 (1979).PubMedGoogle Scholar
  21. 21.
    R. J. Cherry, in: “Membranes and Transport” A. N. Martonosi, ed., Vol. 1, pp. 145–152, Plenum Publishing Co., N.Y. (1982).CrossRefGoogle Scholar
  22. 22.
    G. Poste and A. C. Allison, Biochim. Biophys. Acta, 300:421–465 (1973).PubMedGoogle Scholar
  23. 23.
    S. Weinbaum, J. Theor. Biol., 83:63–92 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    J. Barber and N. R. Baker, in: “Photosynthesis and the Environment”, Vol. 5, Topics in Photosynthesis, Elsevier, Amsterdam (1985).Google Scholar
  25. 25.
    J. M. Anderson, FEBS Lett., 124:1–10 (1981).CrossRefGoogle Scholar
  26. 26.
    J. Barber, Ann. Rev. Plant Physiol., 33:261–295 (1982).CrossRefGoogle Scholar
  27. 27.
    J. Barber, Biochim. Biophys. Acta, 594:253–308 (1980).PubMedGoogle Scholar
  28. 28.
    S. Izawa and N. E. Good, Plant Physiol., 41:544–552 (1966).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Y. I. Wang, and L. Packer, Biochim. Biophys. Acta, 305:488–492 (1973).PubMedCrossRefGoogle Scholar
  30. 30.
    L. A. Staehelin, J. Cell Biol., 71:136–138 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Barber, J. Mills and A. Love, FEBS Lett., 74:174–181 (1977).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Barber, FEBS Lett., 188:1–10 (1980).CrossRefGoogle Scholar
  33. 33.
    V. A. Parsegian, Ann. Rev. Biophys. Bioeng., 2:221–255 (1973).CrossRefGoogle Scholar
  34. 34.
    J. N. Israelachvili, Q. Rev. Biophys., 4:341–387 (1974).Google Scholar
  35. 35.
    D. Langbein, in “Theory of van der Waals Attraction” Springer-verlag, Berlin (1974).Google Scholar
  36. 36.
    M. J. Sculley, J. T. Duniec, S. W. Thome, W. S. Chow and N. K. Boardman, Arch. Biochem. Biophys., 201:339–346 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    B. T. Rubin, J. Barber, G. Paillotin, W. S. Chow and Y. Yamamoto, Biochim. Biophys. Acta, 638:69–74 (1981).CrossRefGoogle Scholar
  38. 38.
    J.-M. Briantais, C. Vernotte, J. Lavorel, J. Olive and F. A. Wollman in: “6th Int. Congr. Photosynth.,”Brussels, Abstract 1, pp 284 (1983)Google Scholar
  39. 39.
    J. Bennett, Nature 269:344–346 (1977).CrossRefGoogle Scholar
  40. 40.
    J. Barber, Photobiochem. Photobiophys., 5:181–190 (1983).Google Scholar
  41. 41.
    J. Bennett, Biochem. J., 212:1–13 (1983)PubMedGoogle Scholar
  42. 42.
    P. Horton, FEBS Lett., 152:47–52 (1983).CrossRefGoogle Scholar
  43. 43.
    L. A. Staehelin, and C. J. Arntzen, J. Cell Biol., 97:1327–1337 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    J. Barber, in: “Photosynthesis III” Encyc Plant Physiol., L. A. Staehelin and C. J. Arntzen eds. Vol. 19, pp. 653–664, Springer-Verlag, Berlin.Google Scholar
  45. 45.
    J. Barber, Photosyn. Res. (1986), in press.Google Scholar
  46. 46.
    A. R. Cashmore, Proc. Natl. Acad. Sci. U.S.A., 81:2960–2964 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    D. Eisenberg, R. M. Weiss, T. C. Terwilliger and W. Wilcox, Faraday Symp. Chem. Soc, 17:109–120 (1982).CrossRefGoogle Scholar
  48. 48.
    J. Bennett, K. E. Steinback and C. J. Arntzen, Proc. Natl. Acad. Sci. U.S.A., 77:5253–5257 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    P. Horton and M. T. Black, FEBS Lett., 119:141–144 (1980).CrossRefGoogle Scholar
  50. 50.
    J. F. Allen, J. Bennett, K. E. Steinback and C. J. Arntzen, Nature, 291:21–25 (1981).CrossRefGoogle Scholar
  51. 51.
    C. Bonaventura and J- Myers, Biochim. Biophys. Acta, 189:366–383 (1969).PubMedCrossRefGoogle Scholar
  52. 52.
    J. Barber, in: “The Intact Chloroplast” Vol. 1, Topics in Photosynthesis, J. Barber ed., pp 89–134, Elsevier, Amsterdam (1975).Google Scholar
  53. 53.
    A. Telfer, J. F. Allen, J. Barber and J. Bennett, Biochim. Biophys. Acta, 722:176–181 (1983).CrossRefGoogle Scholar
  54. 54.
    D. J. Kyle, L. A. Staehelin and C. J. Arntzen, Arch. Biochem. Biophys., 222:527–541 (1983).PubMedCrossRefGoogle Scholar
  55. 55.
    B. Andersson, H.-E. Akerlund, B. Jergil and C. Larsson, FEBS Lett. 149:181–185 (1982).CrossRefGoogle Scholar
  56. 56.
    D.J. Kyle, T.-Y. Kuang, J. L. Watson and C. J. Arntzen, Biochim. Biophys. Acta, 765:89–96 (1984).CrossRefGoogle Scholar
  57. 57.
    J. Farchaus, R. A. Dilley and W.A. Cramer, Biochim. Biophys. Acta, 809:17–26 (1985).CrossRefGoogle Scholar
  58. 58.
    A. Telfer, H. Bottin, J. Barber and P. Mathis, Biochim. Biophys. Acta, 764:324–330 (1984).CrossRefGoogle Scholar
  59. 59.
    A. Telfer, M. Hodges and J. Barber, Biochim. Biophys. Acta, 724:167–175 (1983).CrossRefGoogle Scholar
  60. 60.
    A. Telfer, M. Hodges, P. A. Millner and J. Barber Biochim. Biophys. Acta, 766:554–562, (1984).CrossRefGoogle Scholar
  61. 61.
    M. Hodges and J. Barber, Plant Physiol., 72:1119–1122 (1983).PubMedCrossRefGoogle Scholar
  62. 62.
    S. Malkin, A. Telfer and J. Barber, Biochim. Biophys. Acta, 848:42–48 (1986).Google Scholar
  63. 63.
    K. Gounaris and J. Barber Trends in Biochem. Sci., 8:378–381 (1983).CrossRefGoogle Scholar
  64. 64.
    R. C. Ford and J. Barber Biochim. Biophys. Acta, 722: 341–348 (1983).CrossRefGoogle Scholar
  65. 65.
    K. Kinosita, R. Kataoka, Y. Kimura, O. Gotoh and A. Ikagami, Biochemistry, 20:4270–4277 (1981).PubMedCrossRefGoogle Scholar
  66. 66.
    J. Barber, W. S. Chow, C. Scoufflaire and R. Lannoye, Biochim. Biophys. Acta, 591:92–103 (1980).PubMedCrossRefGoogle Scholar
  67. 67.
    P. Haworth, Arch. Biochem. Biophys., 226:145–154 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. Barber
    • 1
  1. 1.Department of Pure and Applied BiologyImperial College of Science and TechnologyLondonUK

Personalised recommendations