Possible Involvement of Phosphorylation/Dephosphorylation in the Regulation of Epithelial Sodium Channels

  • David S. Lester
  • Carol Asher
  • Haim Garty
Part of the NATO ASI Series book series (NSSA, volume 133)


Luminal Na+ entry in tight epithelia is mediated by amiloride-inhibitable Na+ channels (1). These channels are modulated by several factors, including antidiuretic hormones, such as vasopressin. In the toad bladder and related epithelia it was demonstrated that vasopressin binds to a basolateral membrane receptor and, consequently, activates adenylate cyclase resulting in a rise in intracellular cyclic AMP (cAMP) (2). This rise brings about a two-fold increase in the number of conducting channels (3). The natriferic action of the hormone can also be mimicked by exogenous cAMP (2,4). The increase in Na+ transport was shown to be preceded by an activation of the cytosolic Type II cAMP-dependent protein kinase (cAMPPK) (5), change in cell Ca2+ (6,7), and dephosphorylation of a 50–55 KDa protein (8). This phosphoprotein was tentatively identified as the regulatory subunit of the Type II cAMPPK (9).


Regulatory Subunit Activate Adenylate Cyclase Soybean Trypsin Inhibitor Bladder Epithelial Cell Toad Bladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sariban-Sohraby, S. and Benos, D.J., Am. J. Physiol, 250:C175-C190 (1986).PubMedGoogle Scholar
  2. 2.
    J. S. Handler and J. Orloff, Ann. Rev. Physiol. 43:611–624 (1981).CrossRefGoogle Scholar
  3. 3.
    Lindemann, B., Ann. Rev. Physiol. 46, 497–515 (1984). CrossRefGoogle Scholar
  4. 4.
    D. A. Ausiello and J. Qrloff, in: “Cyclic Nucleotides,” J. W. Kebabian and J. A. Nathanson, eds., Springer-Verlag, New York, pp 271–301 (1982).CrossRefGoogle Scholar
  5. 5.
    D. Schlondorff and N. Franki, Biochim. Biophys. Acta 628:1–12 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Kelepouris, Z.S. Agus and M. M. Civan, J. Memb. Biol. 88:113–121 (1985).CrossRefGoogle Scholar
  7. 7.
    R. M. Burch and P. V. Halushka, Am. J. Physiol. :F939–945 (1984).Google Scholar
  8. 8.
    K. G. Walton, R. J. DeLorenzo, P. F. Curran and P. Greengard, J. Gen. Physiol. 65:153–177 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Y. C. Liu, U. Walter and P. Greengard, Eur. J. Biochem. 114:539–548 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Garty and C. Asher, J. Biol. Chen. 260:8330–8335 (1985).Google Scholar
  11. 11.
    H. Garty and C. Asher, J. Biol. Chem. 261:7400–7406 (1986).PubMedGoogle Scholar
  12. 12.
    H. Garty, J. Memb. Biol. 82:269–279 (1984).CrossRefGoogle Scholar
  13. 13.
    M. M. Bradford, Anal. Biochem. 72:248–254 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    U. K. Laemmli, Nature (London) 277:680–682 (1970).CrossRefGoogle Scholar
  15. 15.
    M. Schliwa, “The cytoskeleton. An introductory survey,” Springer-Verlag, Vienna (1986).Google Scholar
  16. 16.
    S. Pontremolli, E. Melloni and B. L. Horecker, Curr. Topics Cell. Reg. 27:293–303 (1985).Google Scholar
  17. 17.
    R.M. Burch and P.V. Haluska, Am. J. Physiol. 243:F593-F597 (1982).PubMedGoogle Scholar
  18. 18.
    H.J. Rodriguez, D.W. Scholar, M.L. Parkerson and S. Klahr, Am. J. Physiol. 238:F140-F149 (1980).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David S. Lester
    • 1
  • Carol Asher
    • 1
  • Haim Garty
    • 1
  1. 1.Department of Membrane ResearchWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations