Solute Transport Across Bacterial Membranes

  • W. N. Konings
  • A. J. M. Driessen
  • M. G. L. Elferink
  • B. Poolman
Part of the NATO ASI Series book series (NSSA, volume 133)


The cell-envelope of bacteria is composed of a cytoplasmic membrane which is surrounded by a cellwall, murien- or peptidoglycan layer, and outside the cellwall in Gram-negative bacteria by an outer membrane (lipopolysaccharide layer). Both the outer membrane and the cellwall are freely permeable for small solutes and do not form an osmotic barrier of the cell. This function is exclusively fulfilled by the cytoplasmic membrane.


Membrane Vesicle Solute Transport Proton Motive Force Purple Membrane Electron Transfer System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.N. Konings, and P.A.M. Michels, Electron transfer-driven solute translocation across bacterial membranes, in: “Diversity of Bacterial Respiratory Systems”, C.J. Knowles, ed., CRC Press Inc., Boca Raton (1980).Google Scholar
  2. 2.
    L.S. Lolkema, K.J. Hellingwerf, and W.N. Konings, The effect of “probe-binding” on the quantitative determination of the proton motive force in bacteria, Biochim.Biophys.Acta 681:85 (1982).CrossRefGoogle Scholar
  3. 3.
    H.R. Kaback, Membrane vesicles, electrochemical ion-gradients, and active transport, Curr.Top.Membr.Trans. 16:393 (1982).CrossRefGoogle Scholar
  4. 4.
    W.N. Konings, A. Bisschop, M. Veenhuis, and C.A. Vermeulen, New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastucture, J.Bacteriol. 116:1456 (1973).PubMedGoogle Scholar
  5. 5.
    H.R. Kaback, Transport studies in bacterial membrane vesicles, Science, 186:882 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    W.N. Konings, Energization of solute transport in membrane vesicles from anaerobically grown bacteria, Meth.Enzymol. 56:378 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    P.M. Harold, Membranes and energy transduction in bacteria, Curr.Top.Bioenerg. 6:83 (1977).Google Scholar
  8. 8.
    H. Hirata, K. Altendorf, and F.M. Harold, Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli, Prос.Natl.Acad.Sci. USA 70:1804 (1973).CrossRefGoogle Scholar
  9. 9.
    B. Poolman, W.N. Konings, and G.T. Robillard, The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli, Eur.J.Biochem. 135:41 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    J.R. Lancaster, and P.C. Hinkle, Studies on the galactoside transporter in inverted membrane vesicles of Escherichia coli. I. Symmetrical facilitated diffusion and proton coupled transport. J.Biol.Chem. 252:7657 (1977).PubMedGoogle Scholar
  11. 11.
    A.J.M. Driessen, K.J. Hellingwerf, and W.N. Konings, Light-induced generation of a proton motive force and Ca2+-transport in membrane vesicles of Streptococcus cremoris fused with bacteriorhodopsin proteoliposomes, Biochim.Biophys.Acta 808:1 (1985).CrossRefGoogle Scholar
  12. 12.
    A.J.M. Driessen, W. de Vrij, and W.N. Konings, Incorporation of beef heart cytochrome c oxidase as a proton motive force generating mechanism in bacterial membrane vesicles, Proc.Natl.Acad.Sci. USA 82:7555 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    A.J.M. Driessen, W. de Vrij, and W.N. Konings, Functional incorporation of beef-heart cytochrome c_ oxidase into membrane vesicles of Streptococcus cremoris, Eur.J.Biochem. 154:617 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    W. Stoeckenius, The purple membrane of salt-loving bacteria, Sci.Am. 243:38 (1976).CrossRefGoogle Scholar
  15. 15.
    C.A. Yu, L. Yu, and T.E. King, Studies on cytochrome c oxidase. J.Biol.Chem. 250:1383 (1975).PubMedGoogle Scholar
  16. 16.
    P.C. Hinkle, J.J. Kim, and E. Racker, Ion transport and respiratory control in vesicles formed from cytochrome c oxidase and phospho-lipids, J.Biol.Chem. 247:1338 (1972).PubMedGoogle Scholar
  17. 17.
    M.G.L. Elferink, I. Friedberg, K.J. Hellingwerf, and W.N. Konings, The role of the proton motive force and electron flow in light-driven solute transport in Rhodopseudomonas sphaeroides, Eur.J.Biochem. 129:583 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    M.G.L. Elferink, K.J. Hellingwerf, F.E. Nano, S. Kaplan, and W.N. Konings, The lactose carrier of Escherichia coli functionally incorporated in Rhodopseudomonas sphaeroides obeys the regulatory conditions of the phototrophic bacterium, FEBS Lett. 164:198 (1983).CrossRefGoogle Scholar
  19. 19.
    M.G.L. Elferink, The interaction between electron transfer, proton motive force and solute transport in bacteria, Ph.D. Thesis. University of Groningen (1985).Google Scholar
  20. 20.
    B.J. van Schie, K.J. Hellingwerf, J.P. van Dijken, M.G.L. Elferink, J.M. van Dijl, J.G. Kuenen, and W.N. Konings, Energy transduction by electron transfer via a pyrollo-quinoline quinone-depen-dent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi), J.Bacteriol. 163:493 (1985).PubMedGoogle Scholar
  21. 21.
    A. Fonyo, SH-group reagents as tools in the study of mitochondrial anion transport, J.Bioenerg.Biomembr. 10:171 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Haguenauer-Tsapis, and A. Kepes. Unmasking of an essential thiol during function of the membrane band enzyme II of the phos-phoenolpyruvate glucose phosphotransferase system of Escherichia coli, Biochim.Biophys.Acta 465:118 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    D.E. Gohn, G.J. Kaczorowski, and H.R. Kaback, Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles, Biochemistry 20:3308 (1981).CrossRefGoogle Scholar
  24. 24.
    P.W. Postma, and S. Roseman. The bacterial phosphoenol pyruvate: sugar phosphotransferase system, Biochim.Biophys.Acta 457:213 (1976).Google Scholar
  25. 25.
    G.T. Robillard, and W.N. Konings. Physical mechanism for regulation of phosphoenol pyruvate-dependent glucose transport activity in Escherichia coli, Biochemistry 20:5025 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    W.N. Konings, and G.T. Robillard. The physical mechanism for regulation of protein solute transport in Escherichia coli, Prос.Natl. Acad.Sci. USA 79:5480 (1982).CrossRefGoogle Scholar
  27. 27.
    B. Poolman, W.N. Konings, and G.T. Robillard. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli, Eur.J.Biochem. 135:41 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    J.M. Neuhaus, and J.K. Wright. Chemical modification of the lactose carrier of Escherichia coli by plumbagin, phenylarsine oxide or di-ethylpyrocarbonate affects the binding of galactoside, Eur.J.Biochem. 127:597 (1983).Google Scholar
  29. 29.
    G.T. Robillard, and W.N. Konings, The role of dithiol-disulphide interchange in solute transport and energy transduction processes, Eur.J.Biochem. 127:597 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • W. N. Konings
    • 1
  • A. J. M. Driessen
    • 1
  • M. G. L. Elferink
    • 1
  • B. Poolman
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations