Advertisement

Essential Role of Arginine Residues in the Interaction of F0 with F1 in Escherichia Coli ATP Synthase

  • Karlheinz Altendorf
  • Karl Steffens
  • Erwin Schneider
  • Roland Schmid
Part of the NATO ASI Series book series (NSSA, volume 133)

Abstract

In a wide variety of organisms the ATP synthase (F1F0; EC 3.6.1.34) plays a key role in energy metabolism. This enzyme has been described for mitochondria, chloroplasts and bacteria (for reviews, see refs. 1–3). Among these the ATP synthase complex of Escherichia coli has been most extensively characterized by both biochemical and genetic studies. As in all other ATP synthase systems, the E. coli complex is composed of two entities: the F1 sector is a peripheral protein and catalyzes the synthesis of ATP, whereas the F0 part is embedded in the cytoplasmic membrane and serves as a proton translocator. The ATP synthase works in a reversible manner, which means that it is also capable of building up an electrochemical proton gradient driven by ATP hydrolysis.

Keywords

ATPase Activity Arginine Residue Adenosine Triphosphatase Proton Translocation Electrochemical Proton Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Senior and J. G. Wise, The proton-ATPase of bacteria and mitochondria, J. Membrane Biol. 73:105 (1983).CrossRefGoogle Scholar
  2. 2.
    N. Nelson, Proton-ATPase of chloroplasts, Curr. Top. Bioenerg. 11:1 (1981).Google Scholar
  3. 3.
    M. Futai and H. Kanazawa, Structure and function of proton-translocating adenosine triphosphatase (F0F1): Biochemical and molecular biological approaches, Microbiol. Rev. 47:285 (1983).PubMedGoogle Scholar
  4. 4.
    S. D. Dunn and L. A. Heppel, Properties and functions of the subunits of the Escherichia coli coupling factor ATPase, Arch. Biochem. Biophys. 210:421 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    P. V. Vignais and M. Satre, Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases, Mol. Cell. Biochem. 60:33 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Schneider and K. Altendorf, The proton-translocating portion (Fo) of the IS. coli ATP synthase, Trends Biochem. Sci. 9:51 (1984).CrossRefGoogle Scholar
  7. 7.
    J. Hoppe and W. Sebald, The proton conducting Fo-part of bacterial ATP synthases, Biochim. Biophys. Acta 768:1 (1984).PubMedGoogle Scholar
  8. 8.
    R. S. Negrin, D. L. Foster, and R. H. Fillingame, Energy-trans-ducing H+-ATPase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector, J. Biol. Chem. 255:5643 (1980).PubMedGoogle Scholar
  9. 9.
    P. Friedl and H. U. Schairer, The isolated F0 of Escherichia coli ATP-synthase is reconstitutively active in H+-conduction and ATP-dependent energy-transduction, FEBS Lett. 128:261 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Schneider and K. Altendorf, ATP synthetase (F1F0) of Escherichia coli K-12. High-yield preparation of functional F0 by hydrophobic affinity chromatography, Eur. J. Biochem. 126:149 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Schneider and K. Altendorf, Subunit b of the membrane moiety (F0) of ATP synthase (F1F0) from Escherichia coli is indispensable for H+ translocation and binding of the water-soluble F1 moiety, Proc. Natl. Acad. Sci. USA, 81:7279 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    N. J. Gay and J. E. Walker, The atp operon: nucleotide sequence of the promoter and the membrane proteins and the δ subunit of Escherichia coli ATP-synthase, Nucleic Acids Res. 9:3919 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Kanazawa, K. Mabuchi, T. Kayano, T. Noumi, T. Sekiya, and M. Futai, Nucleotide sequence of the genes for F0 components of the proton-translocating ATPase from Escherichia coli: prediction of the primary structure of Fq subunits, Biochem. Biophys. Res. Commun. 103:613 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Nielsen, F. G. Hansen, J. Hoppe, P. Friedl, and K. v. Meyenburg, The nucleotide sequence of the atp genes coding for the Fq subunits a, b, с and the Fi subunit δ of the membrane bound ATP synthase of Escherichia coli, Mol. Gen. Genet. 184:33 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    D. L. Foster and R. H. Fillingame, Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli, J. Biol. Chem. 257:2009 (1982).PubMedGoogle Scholar
  16. 16.
    J. P. Aris and R. D. Simoni, Cross-linking and labeling of the Escherichia coli F1F0-ATP synthase reveal a compact hydro-philic portion of F0 close to an F1 catalytic subunit, J. Biol. Chem. 258:14599 (1983).PubMedGoogle Scholar
  17. 17.
    J. Hermolin, J. Gallant, and R. H. Fillingame, Topology, organization, and function of the psi subunit in the F0 sector of the H+-ATPase of Escherichia coli, J. Biol. Chem. 258:14550 (1983).PubMedGoogle Scholar
  18. 18.
    W. Sebald and J. Hoppe, On the structure and genetics of the proteolipid subunit of the ATP synthase complex, Curr. Top. Bioenerg. 12:1 (1981).Google Scholar
  19. 19.
    J. E. Walker, M. Saraste, and N. J. Gay, E. coli F1-ATPase interacts with a membrane protein component of a proton channel, Nature (Lond.) 298:867 (1982).CrossRefGoogle Scholar
  20. 20.
    H. U. Schairer, J. Hoppe, W. Sebald, and P. Friedl, Topological and functional aspects of the proton conductor, F0, of the Escherichia coli ATP-synthase, Biosci. Rep. 2:631 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    A. E. Senior, Secondary and tertiary structure of membrane proteins involved in proton translocation, Biochim. Biophys. Acta 726:81 (1983).PubMedGoogle Scholar
  22. 22.
    D. S. Perlin, D. N. Cox, and A. E. Senior, Integration of Fi and the membrane sector of the proton-ATPase of Escherichia coli. Role of subunit “b” (uncF protein), J. Biol. Chem. 258:9783 (1983).Google Scholar
  23. 23.
    J. Hoppe, P. Friedl, H. U. Schairer, W. Sebald, K. v. Meyenburg, and B. B. Jørgensen, The topology of the proton translocating Fo component of the ATP synthase from 13. coli K12: studies with proteases, EMBO J. 2:105 (1983).PubMedGoogle Scholar
  24. 24.
    K. Takahashi, The reaction of phenylglyoxal with arginine residues in proteins, J. Biol. Chem. 243:6171 (1968).PubMedGoogle Scholar
  25. 25.
    J. F. Riordan, Functional arginyl residues in carboxypeptidase A. Modification with butanedione, Biochemistry 12:3915 (1973).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Steffens, E. Schneider, B. Herkenhoff, R. Schmid, and K. Altendorf, Chemical modification of the F0 part of the ATP synthase (F1F0) from Escherichia coli. Effects on proton conduction and F1 binding, Eur. J. Biochem. 138:617 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    B. D. Davis and E. S. Mingioli, Mutants of Escherichia coli requiring methionine or vitamin B12, J. Bacteriol. 60:17 (1950).PubMedGoogle Scholar
  28. 28.
    T. Miki, S. Hiraga, T. Nagata, and T. Yura, Bacteriophage λ carrying the Escherichia coli chromosomal region of the replication origin, Proc. Natl. Acad. Sci. USA 75:5099 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    D. L. Foster, M. E. Mosher, M. Futai, and R. H. Fillingame, Subunits of the H+-ATPase of Escherichia coli. Overproduction of an eight-subunit F1F0-ATPase following induction of a X-transducing phage carrying the unc Operon, J. Biol. Chem. 255:12037 (1980).PubMedGoogle Scholar
  30. 30.
    S. Tanaka, S. A. Lerner, and E. C. C Lin, Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol, J. Bacteriol. 93:642 (1967).PubMedGoogle Scholar
  31. 31.
    M. Senda, H. Kanazawa, T. Tsuchiya, and M. Futai, Conformational change of the a subunit of Escherichia coli F1 ATPase: ATP changes the trypsin sensitivity of the subunit, Arch. Biochem. Biophys. 220:398 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    G. Vogel and R. Steinhart, ATPase of Escherichia coli: Purification, dissociation, and reconstitution of the active complex from the isolated subunits, Biochemistry 15:208 (1976).PubMedCrossRefGoogle Scholar
  33. 33.
    P. Friedl, C. Friedl, and H. U. Schairer, ATP synthetase of Escherichia coli K12: Purification of the enzyme and reconstitution of energy-transducing activities, Eur. J. Biochem. 100:175 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Futai, P. C. Sternweis, and L. A. Heppel, Purification and properties of reconstitutively active and inactive adenosine triphosphatase from Escherichia coli, Proc. Natl. Acad. Sci. USA 71:2725 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    N. Sone, M. Yoshida, H. Hirata, and Y. Kagawa, Reconstitution of vesicles capable of energy transformation from phospholipids and adenosine triphosphatase of a thermophilic bacterium, J. Biochem. (Tokyo) 81:519 (1977).Google Scholar
  36. 36.
    K. S. Huang, H. Bayley, and H. G. Khorana, Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid, Proc. Natl. Acad. Sci. USA 77:323 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    K. Weber and M. Osborn, The reliability of molecular weight determinations by dodecyl sulfate-Polyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406 (1969).PubMedGoogle Scholar
  38. 38.
    U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (Lond.) 227:680 (1970).CrossRefGoogle Scholar
  39. 39.
    N. Latruffe, M. S. El Kebbaj, C. Moussard, and Y. Gaudemer, Permeability of inner mitochondrial membrane to arginine reagents, FEBS Lett. 144:273 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    N. Sone, K. Ikeba, and Y. Kagawa, Inhibition of proton conduction by chemical modification of the membrane moiety of proton translocating ATPase, FEBS Lett. 97:61 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    T. W. Loo, H. Stan-Lotter, D. Mackenzie, R. S. Molday, and P. D. Bragg, Interaction of Escherichia coli F1-ATPase with dicyclohexylcarbodiimide-binding polypeptide, Biochim. Biophys. Acta 733:274 (1983).PubMedCrossRefGoogle Scholar
  42. 42.
    M. E. Mosher, L. K. White, J. Hermolin, and R. H. Fillingame, H+-ATPase of Escherichia coli. An uncE mutation impairing coupling between F1 and F0 but not F0-mediated H+ translocation, J. Biol. Chem. 260:4807 (1985).PubMedGoogle Scholar
  43. 43.
    P. D. Bragg, The ATPase complex of Escherichia coli, Can. J. Biochem. Cell Biol. 62:1190 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Karlheinz Altendorf
    • 1
  • Karl Steffens
    • 1
  • Erwin Schneider
    • 1
  • Roland Schmid
    • 1
  1. 1.Mikrobiologie, Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany

Personalised recommendations