Advertisement

Development of the Blastocyst: Role of Cell Polarity in Cavitation and Cell Differentiation

  • Lynn M. Wiley

Abstract

Blastocyst formation entails two interrelated events: 1) cavitation, whereby the embryo develops a blastocoele, and 2) differentiation of the first two cell types to appear in the mammalian embryo, i. e., trophectoderm and inner cell mass (ICM). The trophectoderm, which forms the wall of the blastocoele, is the only tissue that can implant the embryo in the uterus and protect the fetus against maternal immunological rejection. The ICM, which is a cluster of 3 to 10 cells that adheres to the luminal surface of the trophectoderm, is the sole cellular source of the entire embryo (Gardner, 1975; Gardner and Rossant, 1976). The blastocoele is thought to be essential for the normal development and function of the trophectoderm and ICM, since there has never been a recorded case of both these two cell types developing in the absence of cavitation.

Keywords

Inner Cell Mass Field Axis Mammalian Embryo Basolateral Plasma Membrane Cavitation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benos, D.J., 1981a, Developmental changes in epithelial transport characteristics of preimplantation rabbit blastocysts, J. Physiol. (London) 316: 191–202.Google Scholar
  2. Benos, D.J., 1981b, Ouabain binding to preimplantation rabbit blastocysts, Dev. Biol. 83: 69–78.PubMedCrossRefGoogle Scholar
  3. Berridge, M.J., and Oschman, J.L., 1972, Transporting Epithelia, Academic Press, New York.Google Scholar
  4. Borland, R.M., Biggers, J.D., and Lechene, C.P., 1977, Studies on the composition and formation of mouse blastocoele fluid using electron probe microanalysis, Dev. Biol. 55: 1–8.PubMedCrossRefGoogle Scholar
  5. Calarco, P.G., and Brown, E.H., 1969, An ultrastructural and cytological study of preimplantation development of the mouse, J. Exp. Zool. 171: 253–284.PubMedCrossRefGoogle Scholar
  6. Cohen, I., Daut, J., and Noble, D., 1976, An analysis of the actions of low concentrations of ouabain on membrane currents in Purkinje fibers, J. Physiol. (London) 260: 75–103.Google Scholar
  7. Cross, M.H., Cross, P.C., and Brinster, R.L., 1973, Changes in membrane potential during mouse egg development, Dev. Biol. 33: 412–416.PubMedCrossRefGoogle Scholar
  8. DiZio, S.M., and Tasca, R.J., 1977, Sodium-dependent amino acid transport in preimplantation mouse embryos. III. Na+-K+-ATPase-linked mechanism in blastocysts, Dev. Biol. 59: 198–205.PubMedCrossRefGoogle Scholar
  9. Ducibella, T., and Anderson, E., 1975, Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst, Dev. Biol. 47: 45–58.PubMedCrossRefGoogle Scholar
  10. Ducibella, T., Albertini, D.F., Anderson, E., and Biggers, J.D., 1975, The preimplantation mammalian embryo: Characterization of intercellular junctions and their appearance during development, Dev. Biol. 45: 231–250.PubMedCrossRefGoogle Scholar
  11. Eglitis, M.A., and Wiley, L.M., 1981, Tetraploidy and early development: Effects on developmental timing and embryonic metabolism, J. Embryol. Exp. Morphol. 66: 91–108.PubMedGoogle Scholar
  12. Erickson, C.A., and Nuccitelli, R., 1984, Embryonic fibroblast motility and orientation can be influenced by physiological electric fields, J. Cell Biol. 98: 296–307.PubMedCrossRefGoogle Scholar
  13. Flynn, T.J., and Hillman, N., 1978, Lipid synthesis from [U-14C] glucose in preimplantation mouse embryos in culture, Biol. Reprod. 19: 922–926.PubMedCrossRefGoogle Scholar
  14. Flynn, T.J., and Hillman, N., 1980, The metabolism of exogenous fatty acids by preimplantation mouse embryos developing in vitro, J. Embryol. Exp. Morphol. 56: 157–168.PubMedGoogle Scholar
  15. Fossel, E.T., and Solomon, A.K., 1978, Ouabain-sensitive interaction between human red cell membrane and glycolytic enzyme complex in cytosol, Biochim. Biophys. Acta 570: 99–111.Google Scholar
  16. Gardner, R.L., 1975, Analyses of determination and differentiation in the early mammalian embryo using intra-and inter-specific chimaeras, in: The Developmental Biology of Reproduction (C.L. Markert, and J. Papaconstantinou, eds.), Academic Press, New York, pp. 207–236.Google Scholar
  17. Gardner, R.L., and Rossant, J., 1976, Determination during embryogenesis, in: Embryogenesis in Mammals, CIBA Foundation Symposium 40, Elsevier, North-Holland, Amsterdam, pp. 5–26.Google Scholar
  18. Ginsberg, L., and Hillman, N., 1973, ATP metabolism in cleavage-stage mouse embryos, J. Embryol. Exp. Morphol. 30: 267–282.PubMedGoogle Scholar
  19. Glynn, I.M., 1957, The action of cardiac glycosides on sodium and potassium movements in human red cells, J. Physiol. (London) 136: 148–173.Google Scholar
  20. Glynn, I.M., 1964, The action of cardiac glycosides on ion movements, Pharmacol. Rev. 16: 381–407.PubMedGoogle Scholar
  21. Hoffstein, S., Goldstein, I.M., and Weissmann, G., 1977, Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation, J. Cell Biol. 73: 242–256.PubMedCrossRefGoogle Scholar
  22. Jaffe, L., 1977, Electrophoresis along cell membranes, Nature (London) 265: 600–602.CrossRefGoogle Scholar
  23. Jaffe, L.F., 1982, Developmental currents, voltages, and gradients, in: Developmental Order: Its Origin and Regulation (S. Subtelny, and P.B. Green, eds.), Alan R. Liss, New York, pp. 183–215.Google Scholar
  24. Jaffe, L.F., and Nuccitelli, R., 1974, An ultrasensitive vibrating probe for measuring steady extracellular currents, J. Cell Biol. 63: 614–628.PubMedCrossRefGoogle Scholar
  25. Malaisse, W. J., Malaisse-Lange, F., Van Obberghen, E., Somers, G., DeVis, G., Ravazzola, M., and Orci, L., 1975, Role of microtubules in the phasic pattern of insulin release, Ann. N.Y. Acad. Sci. 253: 630–652.PubMedCrossRefGoogle Scholar
  26. Martin, G.R., 1980, Teratocarcinomas and mammalian embryogenesis, Science 209: 768–776.PubMedCrossRefGoogle Scholar
  27. McLaren, A., and Smith, R., 1977, Functional test of tight junctions in the mouse blastocyst, Nature (London) 267: 351–353.CrossRefGoogle Scholar
  28. Melissinos, K., 1907, Die entwicklung des eles der mause, Arch. Mikr. Anat. 70: 577–628.CrossRefGoogle Scholar
  29. Mintz, B., 1965, Experimental genetic mosaicism in the mouse, in: Preimplantation Stages of Pregnancy (G.E.W. Wolstenholme, and M. O’Connor, eds.), Churchill Ltd., London, pp. 194–207.Google Scholar
  30. Nadajcka, M., and Hillman, N., 1975, Autoradiographic studies of tn/tn mouse embryos, J. Embryol. Exp. Morphol. 33: 725–730.Google Scholar
  31. Nuccitelli, R., 1983, Transcellular ion currents: Signals and effectors of cell polarity, in: Spatial Organization of Eukaryotic Cells (J.R. McIntosh, ed.), Alan R. Liss, New York, pp. 451–482.Google Scholar
  32. Nuccitelli, R., and Wiley, L.M., 1985, Polarity of isolated blastomeres from mouse morulae: Detection of transcellular ion currents, Dev. Biol. 109: 452–463.PubMedCrossRefGoogle Scholar
  33. Poisner, A.M., and Cooke, P., 1975, Microtubules and the adrenal medulla, Ann. N.Y. Acad. Sci. 253: 653–669.PubMedCrossRefGoogle Scholar
  34. Quatrano, R.S., Brawley, S.H., and Hogsett, W.E., 1978, The control of the polar deposition of a sulfated polysaccharide in Fucus zygotes, in: Determinants of Spatial Organization (S. Subtelny, and I.R. Konigsberg, eds.), Academic Press, New York, pp. 77–96.Google Scholar
  35. Robinson, K.R., 1979, Electrical currents through full-grown and maturing Xenopus oocytes, Proc. Natl. Acad. Sci. USA 76: 837–841.PubMedCrossRefGoogle Scholar
  36. Stekhoven, F.S., and Bonting, S.L., 1981, Transport adenosine triphosphatases: properties and functions, Physiol. Rev. 61: 1–76.Google Scholar
  37. Stern, C.D., 1982, Experimental reversal of polarity in chick embryo epiblast sheets in vitro, Exp. Cell Res. 140: 468–471.PubMedCrossRefGoogle Scholar
  38. Vorbrodt, A., Konwinski, M., Solter, D., and Koprowski, H., 1977, Ultrastructural cytochemistry of membrane-bound phosphatases in preimplantation mouse embryos, Dev. Biol. 55: 117–134.PubMedCrossRefGoogle Scholar
  39. Wiley, L.M., 1984a, Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of nascent blastocoele fluid, Dev. Biol. 105: 330–342.PubMedCrossRefGoogle Scholar
  40. Wiley, L.M., 1984b, The cell surface of the mammalian embryo during early development, in: Ultrastructure of Reproduction (J. Van Blerkom, and P. Motta, eds.), Martinus Nijhoff Publishers, Boston, pp. 190–204.CrossRefGoogle Scholar
  41. Wiley, L.M., and Eglitis, M.A., 1980, Effects of colcemid on cavitation during mouse blastocoele formation, Exp. Cell Res. 127: 89–101.PubMedCrossRefGoogle Scholar
  42. Wiley, L.M., and Eglitis, M.A., 1981, Cell surface and cytoskeletal elements: Cavitation in the mouse preimplantation embryo, Dev. Biol. 86: 493–501.PubMedCrossRefGoogle Scholar
  43. Wiley, L.M., and Nuccitelli, R., 1985, Polarity of isolated blastomeres from mouse 8-cell stage embryos: Effect of an applied electric field, J. Cell Biol. 101: 472a.Google Scholar
  44. Wiley, L.M., Spindle, A.I., and Pedersen, R.A., 1978, Morphology of isolated mouse inner cell masses in vitro, Dev. Biol. 63: 1–10.PubMedCrossRefGoogle Scholar
  45. Wiley, L.M., Takaki, K.K., and Yamagata, M., 1985, Electron microscopy of mouse preimplantation embryos and isolated blastomeres immobilized on coverslips, Gamete Res. 11: 51–58.CrossRefGoogle Scholar
  46. Ziomek, C.A., and Johnson, M.H., 1981, Properties of polar and apolar cells from the 16-cell mouse morula, Wilhelm Roux’s Arch. Dev. Biol. 190: 287–296.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Lynn M. Wiley
    • 1
  1. 1.Division of Reproductive Biology and Medicine, Department of Obstetrics and GynecologyUniversity of CaliforniaDavisUSA

Personalised recommendations