Genetic Tools for the Analysis of Gene Expression in Plants

  • Csaba Koncz
  • Norbert Martini
  • Zsuzsanna Koncz-Kalman
  • Olle Olsson
  • Andrea Radermacher
  • Aladar Szalay
  • Jeff Schell
Part of the Basic Life Sciences book series (BLSC, volume 41)


The analysis of gene expression in plants is often based on correlations between data obtained by a variety of means: biochemical, physiological, and molecular genetic studies on the one hand, and classical genetic tools on the other hand. Among the techniques applied to the study of plant genes are screening of various genomic and complementary DNA (cDNA) libraries by synthetic oligonucleotides, gene- or organ-specific cDNAs, or antibody probes, in vitro translation of hybrid-released mRNAs, two-dimensional protein gel electrophoresis, immunoblotting, and transcript mapping (7,10). However, for an in depth understanding of how certain genes are regulated, alternative approaches are needed.


Gene Fusion Chimeric Gene Selectable Marker Gene Chloramphenicol Acetyl Transferase Target Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An, G., B.D. Watson, S. Stachel, M.P. Gordon, and E.W. Nester, (1985) New cloning vehicles for transformation of higher plants. EMBO J. 4: 277–284.PubMedGoogle Scholar
  2. 2.
    Baldwin, T.O., T. Berends, T.A. Bunch, T.F. Holzman, S.K. Rausch, L. Shamansky, M.L. Treat, and M.M. Ziegler, (1984) Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli. Biochemistry 23: 3663–3667.PubMedCrossRefGoogle Scholar
  3. 3.
    Bellofatto, V., L. Shapiro, and D.A. Hodgson, (1984) Generation of a Tn5 promoter probe and its use in the study of Caulobacter crescentus. Proc. Natl. Acad. Sci., USA 81: 1035–1039.PubMedCrossRefGoogle Scholar
  4. 4.
    Berg, D.E., and C.H. Berg, (1983) The procaryotic transposable element TnS. Bio/Technology 1: 417–435.CrossRefGoogle Scholar
  5. 5.
    Bevan, M., (1984) Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8721.PubMedCrossRefGoogle Scholar
  6. 6.
    De Bruijn, F.J., and J.R. Lupski, (1984) The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetical maps of DNA segments cloned into multicopy plasmids-Review. Gene 27: 131–149.PubMedCrossRefGoogle Scholar
  7. 7.
    Dodds, J.H., ed. (1985) Plant Genetic Engineering, Cambridge University Press, Cambridge, England.Google Scholar
  8. 8.
    Engebrecht, J., K. Nealson, and M. Silverman, (1983) Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell 32: 773–781.PubMedCrossRefGoogle Scholar
  9. 9.
    Fluhr, R., C. Kuhlemeyer, F. Nagy, and N.H. Chua, (1985) Organ specific and light induced expression of plant genes. Science 232: 1106–1112.CrossRefGoogle Scholar
  10. 10.
    Freeling, M., ed., (1985) Plant Genetics (UCLA Symposia on Molecular and Cellular Biology, New Series Vol. 35 ), Alan R. Liss, Inc., New York.Google Scholar
  11. 11.
    Fromm, M., L.P. Taylor, and V. Walbot, (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci., USA 82: 5824–5828.PubMedCrossRefGoogle Scholar
  12. 12.
    Hastings, J.W., and K.H. Nealson, (1977) Bacterial bioluminescence. Ann. Rev. Microbiol. 51: 549–595.CrossRefGoogle Scholar
  13. 13.
    Hastings, J.W., T.O. Baldwin, and M.Z. Nicoli, (1978) Bacterial luciferase: Assay, purification and properties. In Bioluminescence and Chemiluminescence (Methods in Enzymology, Vol. LVII), M.A. DeLuca, ed. Academic Press, Inc., New York, pp. 135–152.Google Scholar
  14. 14.
    Helmer, G., M. Casabadan, M. Bevan, L. Kayes, and M.-D. Chilton, (1984) A new chimeric gene as a marker for plant transformation: The expression of Escherichia coli ß-galactosidase in sunflower and tobacco cells. Bio/Technology 1: 520–527.CrossRefGoogle Scholar
  15. 15.
    Herrera-Estrella, L., A. Depicker, M. Van Montagu, and J. Schell, (1983) Expression of chimeric genes transferred into plant cells using a Ti-plasmid derived vector. Nature 303: 209–213.CrossRefGoogle Scholar
  16. 16.
    Herrera-Estrella, L., M. De Block, E. Messens, J.P. Hernalsteens, M. Van Montagu, and J. Schell, (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2: 987–995.PubMedGoogle Scholar
  17. 17.
    Horsch, R.B., J.E. Fry, N.L. Hoffman, D. Eichholz, S.G. Rogers, and R.T. Fraley, (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231.CrossRefGoogle Scholar
  18. 18.
    Joos, H., D. Inze, A. Caplan, M. Sormann, M. Van Montagu, and J. Schell, (1983) Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32: 1057–1067.PubMedCrossRefGoogle Scholar
  19. 19.
    Klee, H.J., M.F. Yanofsky, and E.W. Nester, (1985) Vectors for transformation of higher plants. Bio/Technology 3: 637–642.CrossRefGoogle Scholar
  20. 20.
    Koncz, C., and J. Schell, (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium vector. Mol. Gen. Genet. 204: 383–396.CrossRefGoogle Scholar
  21. 21.
    Koncz, C., Zs. Koncz-Kalman, and J. Schell, (1986) Transposon Tn5 mediated gene transfer into plants. Mol. Gen. Genet. (in apress).Google Scholar
  22. 22.
    Koncz, C., F. Kreuzaler, Zs. Kalman, and J. Schell, (1984) A simple method to transfer, integrate, and study expression of foreign genes, such as chicken ovalbumin and a-actin in plant tumors. EMBO J. 3: 1597–1603.Google Scholar
  23. 23.
    Koncz, C., O. Olsson, W.H.R. Langridge, J. Schell, and A. Szalay, (1986) Expression and functional assembly of bacterial luciferase in plants. Proc. Natl. Acad. Sci., USA (in apress).Google Scholar
  24. 24.
    Manoil, C., and J. Beckwith, (1985) Tn phoA: A transposon probe for protein export signals. Proc. Natl. Acad. Sci., USA 82: 8129–8133.PubMedCrossRefGoogle Scholar
  25. 25.
    Marton, L., G.J. Wullems, L. Molendijk, and R.A. Schilperoort, (1982) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277: 129–131.CrossRefGoogle Scholar
  26. 26.
    Reiss, B., R. Sprengel, and H. Schaller, (1984) Protein fusions with the kanamycin resistance gene from transposon Tn5. EMBO J. 3: 3317–3322.PubMedGoogle Scholar
  27. 27.
    Saedler, H., U. Bonas, A. Gierl, B.J. Harrison, R.B. Klösgen, E. Krebbers, P. Nevers, P.A. Peterson, Zs. Schwarz-Sommer, H. Sommer, K. Upadhyaya, and U. Wienand, (1984) Transposable elements in Antirrhinum majus and Zea mays. Cold Spring Harbor Symp. Quant. Biol. 49: 355–361.PubMedCrossRefGoogle Scholar
  28. 28.
    Schell, J., H. Kaulen, F. Kreuzaler, P. Eckes, S. Rosahl, L. Willmitzer, A. Spena, B. Baker, L. Herrera-Estrella, and N. Fedoroff, (1985) Transfer and regulation of expression of chimeric genes in plants. Cold Spring Harbor Symp. Quant. Biol. 50: 421–431.CrossRefGoogle Scholar
  29. 29.
    Shillito, R.D., M.W. Saul, J. Paszkowski, M. Müller, and I. Potrykus, (1985) High efficiency direct gene transfer to plants. Bio/Technology 3: 1099–1103.CrossRefGoogle Scholar
  30. 30.
    Simon, R., (1984) High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol. Gen. Genet. 196: 413–420.PubMedCrossRefGoogle Scholar
  31. 31.
    Stachel, S.E., B. Timmerman, and P. Zambryski, (1986) Generation of single stranded T-DNA molecules during the initial stages of T-DNA transfer of A. tumefaciens to plant cells. Nature 322: 706–716.CrossRefGoogle Scholar
  32. 32.
    Stachel, S.E., E. Messens, M. Van Montagu, and P. Zambryski, (1985) Identification of signal molecules produced by wounded plant cells that activate T-DNA transfer. in Agrobacterium tumefaciens. Nature 318: 624–630.Google Scholar
  33. 33.
    Van den Elzen, P.J.M., K.Y. Lee, J. Townsend, and J.R. Bedbrook, (1985) Simple binary vectors for DNA transfer to plant cells. Plant Mol. Biol. 5: 149–154.CrossRefGoogle Scholar
  34. 34.
    Vasil, I.K., ed., (1984) Cell Culture and Somatic Cell Genetics of Plants, Vol. 1, Academic Press, Inc., New York.Google Scholar
  35. 35.
    Velten, J., and J. Schell, (1985) Selection-expression plasmid vectors for use in plants. Nucl. Acids Res. 13: 6981–6998.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, K., L. Herrera-Estrella, M. Van Montagu, and P. Zambryski, (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455–462.PubMedCrossRefGoogle Scholar
  37. 37.
    Willmitzer, L., P. Dhaese, P. Schreier, W. Schmalenbach, M. Van Montagu, and J. Schell, (1983) Size, location and polarity of T-DNA encoded transcripts in nopaline crown gall tumors: Common transcripts in octopine and nopaline tumors. Cell 32: 1045–1056.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Csaba Koncz
    • 1
    • 2
  • Norbert Martini
    • 1
  • Zsuzsanna Koncz-Kalman
    • 1
  • Olle Olsson
    • 1
  • Andrea Radermacher
    • 1
  • Aladar Szalay
    • 3
  • Jeff Schell
    • 1
  1. 1.Max-Planck-Institut für ZüchtungsforschungFederal Republic of Germany
  2. 2.Institute of Genetics Biological Research CenterHungarian Academy of SciencesSzegedHungary
  3. 3.Boyce Thompson Institute of Plant ResearchCornell UniversityIthacaUSA

Personalised recommendations