Advertisement

Environmental Regulation of Neurotransmitter Phenotypic Expression in Sympathetic Neurons

  • John A. Kessler
Part of the Serono Symposia, USA book series (SERONOSYMP)

Abstract

The development of cellular specialization within the nervous system requires precise mechanisms for regulating expression of diverse neurotransmitter phenotypes. Neuronal choice of transmitter does not depend solely on intrinsic cellular information, but is influenced by neuronal interactions with the environment.

Keywords

Nerve Growth Factor Tyrosine Hydroxylase Sympathetic Neuron Nonneuronal Cell Tyrosine Hydroxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patterson PH, Chun LLY. The induction of acetylcholine synthesis in primary cultures of dissociated sympathetic neurons. I. Effects of conditioned medium. Dev Biol 1977; 56: 263.PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson M, Ross D, Myers M, Bunge R, Wakshull E, Burton H. Synaptic vesicle cytochemistry changes when cultured sympathetic neurons develop cholinergic interactions. Nature (London) 1976; 262: 308.CrossRefGoogle Scholar
  3. 3.
    LeDouarin NM, Teillet M, Ziller C, Smith J. Adrenergic differentiation of cells of the cholinergic ciliary and Remak ganglia in avian embryos after in vivo transplantation. Proc Natl Acad Sci USA 1978; 75: 2030.Google Scholar
  4. 4.
    Kessler JA, Adler J, Bohn MC, Black IB. Substance P in principal sympathetic neurons: regulation by impulse activity. Science 1981; 214: 335.PubMedCrossRefGoogle Scholar
  5. 5.
    Higgins D, Burton H. Electrotonic synapses are formed by fetal rat sympathetic neurons maintained in a chemically defined culture medium. Neuroscience 1982; 7: 2241.Google Scholar
  6. 6.
    Kessler JA, Spray DC, Saez JC, Bennett MVL. Determination of synaptic phenotype: insulin and cAMP independently initiate development of electrotonic coupling between cultured sympathetic neurons. Proc Natl Acad Sci USA 1984; 81: 6325.CrossRefGoogle Scholar
  7. 7.
    Hendry IA, Iversen LL, Black IB. A comparison of the neural regulation of tyrosine hydroxylase activity in sympathetic ganglia of adult mice and rats. J Neurochem 1973; 20: 1683.PubMedCrossRefGoogle Scholar
  8. 8.
    Thoenen H, Mueller RA, Axelrod J. Trans-synaptic induction of adrenal tyrosine hydroxylase. J Pharmacol Exp Ther 1969; 169: 249.PubMedGoogle Scholar
  9. 9.
    Black IB. Stages of neurotransmitter development in autonomic neurons. Science 1982; 215: 1198.PubMedCrossRefGoogle Scholar
  10. 10.
    Kessler JA, Black IB. Mechanisms governing peptidergic phenotypic expression and development. In: Krieger DT, et al., eds. Brain peptides. New York: Wiley, 1983.Google Scholar
  11. 11.
    Kessler JA. Environmental co-regulation of substance P, somatostatin, and neurotransmitter synthesizing enzyme in cultured sympathetic neurons. Brain Res 1984; 321: 155.PubMedCrossRefGoogle Scholar
  12. 12.
    Kessler JA. Non-neuronal cell conditioned medium stimulates peptidergic expression in sympathetic and sensory neurons in vitro. Dev Biol 1984; 106: 61.PubMedCrossRefGoogle Scholar
  13. 13.
    Kessler JA. Differential regulation of peptide and catecholamine characters in cultured sympathetic neurons. Neuroscience 1985; 15: 827.PubMedCrossRefGoogle Scholar
  14. 14.
    Adler J, Black IB. Sympathetic neuron density differentially regulates transmitter phenotypic expression in culture. Proc Nati Acad Sci USA 1985; 82: 4296.CrossRefGoogle Scholar
  15. 15.
    Kessler JA, Conn G, and Hatcher VB. Isolated plasma membranes regulate neurotransmitter expression and facilitate effects of a soluble brain cholinergic factor. Proc Natl Acad Sci USA (in press).Google Scholar
  16. 16.
    Hamburger V. The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J Exp Zool 1934; 68: 448.CrossRefGoogle Scholar
  17. 17.
    Prestige MC. The control of cell number in the lumbar spinal ganglia during the development of Xenopus laeuis tadpoles. J Embryol Exp Morphol 1967; 17: 453.PubMedGoogle Scholar
  18. 18.
    Olson L, Malmfors T. Growth characteristics of adrenergic nerves in the adult rat. Acta Physiol Scand 1970; 348 (suppl): 1.Google Scholar
  19. 19.
    Hendry IA, Iversen LL. Changes of enzyme pattern in the sympathetic nervous system of adult mice after submaxillary gland removal: response to exogenous nerve growth factor. J Neurochem 1974; 22: 999.PubMedCrossRefGoogle Scholar
  20. 20.
    Berg DK. New neuronal growth factors. Annu Rev Neurosci 1984; 7: 149.PubMedCrossRefGoogle Scholar
  21. 21.
    Kessler JA, Black IB. Nerve growth factor stimulates the development of substance P in sensory ganglia. Proc Nati Acad Sci USA 1980; 77: 649.CrossRefGoogle Scholar
  22. 22.
    Kessler JA, Black IB. Similarities in development of substance P and somatostatin in peripherial sensory neurons: effects of capsaicin and nerve growth factor. Proc Natl Acad Sci USA 1981; 78: 4644.PubMedCrossRefGoogle Scholar
  23. 23.
    Mudge AW. Effects of chemical environment on levels of substance P and somatostatin in cultured sensory neurons. Nature (London) 1981; 292: 764.CrossRefGoogle Scholar
  24. 24.
    Kessler JA, Adler J, Jonakait GM, Black IB. Target organ regulation of substance P in sympathetic neurons in culture. Dev Biol 1984; 103: 71.PubMedCrossRefGoogle Scholar
  25. 25.
    Black IB, Geen SL. Trans-synaptic regulation of adrenergíc neuron development. Inhibition by ganglionic blockade. Brain Res 1973; 63: 291.PubMedCrossRefGoogle Scholar
  26. 26.
    Thoenen H. Trans-synaptic enzyme induction. Life Sci 1974; 14: 223.PubMedCrossRefGoogle Scholar
  27. 27.
    Walicke P, Campenot R, Patterson P. Determination of transmitter function by neuronal activity. Proc Natl Acad Sci USA 1977; 74: 5767.PubMedCrossRefGoogle Scholar
  28. 28.
    Hefti F, Gnahn H, Schwab ME, Thoenen H. Induction of tyrosine hydroxylase by nerve growth factor and by elevated K+ concentrations in culture, of dissociated sympathetic neurons. J Neurosci 1982; 2: 1554.PubMedGoogle Scholar
  29. 29.
    Kessler JA, Black IB. Regulation of substance P in adult rat sympathetic ganglia. Brain Res 1982; 234: 182.PubMedCrossRefGoogle Scholar
  30. 30.
    Spiegel K, Kessler JA. Environmental regulation of neurotransmitter gene transcription (Abstract). Soc Neurosci 1985; 11: 669.Google Scholar
  31. 31.
    Mackay A, Iversen L. Increased tyrosine hydroxylase activity of sympathetic ganglia cultured in the presence of dibutyryl cyclic AMP. Brain Res 1972; 48: 424.PubMedCrossRefGoogle Scholar
  32. 32.
    Candido E, Reeves R, Davie J. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978; 14: 105.PubMedCrossRefGoogle Scholar
  33. 33.
    Iacovetti L, Johnson M, Joh T, Bunge R. Biochemical and morphological characterization of sympathetic neurons grown in a chemically defined medium. Neuroscience 1982; 7: 2225.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • John A. Kessler
    • 1
  1. 1.Albert Einstein College of MedicineBronxUSA

Personalised recommendations