Advertisement

Somatostatin pp 253-258 | Cite as

Somatostatin Inhibits Intestinal Motility via Modulation of Cyclic AMP-Dependent Cholinergic Transmission

  • Chung Owyang
  • John Wiley
Part of the Serono Symposia, USA book series (SERONOSYMP)

Abstract

Somatostatin (SRIF) is a tetradecapeptide that was initially isolated from ovine hypothalamus and described as an inhibitor of growth hormone release (1).

Keywords

Adenylate Cyclase Myenteric Plexus Pertussis Toxin Acetylcholine Release Cholinergic Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brazeau P, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973; 179: 77–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Vale W, Brazeau P, Rivier C, et al. Somatostatin. Recent Prog Horm Res 1975; 31: 365–97.Google Scholar
  3. 3.
    Hokfelt T, Johansson O, Luft R, Arimura A. Immunohistochemical evidence for the presence of somatostatin, a powerful inhibitory peptide, in some primary sensory neurons. Neurosci Lett 1975; 1: 231–5.CrossRefGoogle Scholar
  4. 4.
    Hokfelt T, Elfvin LG, Elde R, Schultzberg M, Goldstein M, Luft R. Occurrence of somatostatin immunoreactívity in some peripheral sympathetic nonadrenergic neurons. Proc Natl Acad Sci USA 1977; 74: 3587–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Hokfelt T, Efendic S, Johansson 0, Luft R, Arimura A. Immunohistochemical localization of somatostatin (growth hormone release-inhibiting factor) in the guinea pig brain. Brain Res 1974; 80: 165–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Costa M, Furness JB, Llewellyn-Smith IJ, Davies B, Oliver J. An immunohistochemical study of the projections of somatostatin-containing neurons in the guinea pig intestine. Neuroscience 1980; 5: 84152.Google Scholar
  7. 7.
    Johansson C, Efendic S, Wisen 0, Uvnas-Wallensten K, Luft R. Effects of short-term somatostatin infusion on the gastric and intestinal propulsion in humans. Scand J Gastroenterol 1978; 13: 481–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Lux G, Femppel J, Leaderer P. Somatostatin induces interdigestive intestinal motor and secretory complex-like activity in man. Gastroenterology 1980; 78: 1212.Google Scholar
  9. 9.
    Peeters TL, Janssens J, Vantrappen GR. Somatostatin and the inter-digestive migrating motor complex in man. Regul Pept 1983; 5: 209–17.PubMedCrossRefGoogle Scholar
  10. 10.
    Thor P, Krol R, Konturek SJ. Effect of somatostatin on myoelectrical activity of the small bowel. Am J Physiol 1978; 235: E249–54.PubMedGoogle Scholar
  11. 11.
    Cohen ML, Rosina E, Wiley KS, Slater IH. Somatostatin inhibits adrenergic and cholinergic neurotransmission in smooth muscle. Life Sci 1978; 23: 1659–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Guillemin R. Somatostatin inhibits the release of acetylcholine induced electrically in the myenteric plexus. Endocrinology 1976; 99: 1654.CrossRefGoogle Scholar
  13. 13.
    Furness JB, Costa M. Actions of somatostatin on excitatory and inhibitory nerves in the intestine. Eur J Pharmacol 1979; 56: 69–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu Z, Kisslinger SD, Gazinella TS. Functional evidence for the presence of cholinergic nerve endings in the colonic mucosa of the rat. J Pharmacol Exp Ther 1982; 221: 664–9.PubMedGoogle Scholar
  15. 15.
    Gustafsson L, Hedquist P, Fredholm BB, Lundgren G. Inhibition of acetylcholine release in guinea pig ileum by adenosine. Acta Physiol Scand 1978; 104: 469–78.PubMedCrossRefGoogle Scholar
  16. 16.
    Katz B. Nerve, muscle, and synapse. New York: McGraw-Hill, 1966.Google Scholar
  17. 17.
    Berridge MJ. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 1984; 220: 345–60.PubMedGoogle Scholar
  18. 18.
    Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312: 315–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Rasmussen H, Kojima I, Kojima K, et al. Calcium as intracellular messenger: sensitivity modulation, C-kinase pathway and sustained cellular response. Adv Cyclic Nucleotide Res 1984; 18: 159–93.Google Scholar
  20. 20.
    Reisine TD. Somatostatin inhibition of cyclic AMP accumulation and adenocorticotropin release from mouse anterior pituitary tumor cells: mode of action and self-regulation. Adv Cyclic Nucleotide Res 1985; 19: 169–77.Google Scholar
  21. 21.
    Reichlin S. Somatostatin. N Engl J Med 1983; 309: 1495–501.PubMedCrossRefGoogle Scholar
  22. 22.
    Curry D, Bennett L. Does somatostatin inhibition of insulin secretion involve two mechanisms of action? Proc Natl Acad Sci USA 1976; 73: 248–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Koch BD, Donflinger LJ, Schonbrunn A. Pertussis toxin blocks both cyclic-AMP-mediated and cyclic AMP-independent actions of somatostatin. J Biol Chem 1985; 260: 13138–45.PubMedGoogle Scholar
  24. 24.
    Richardson U, Schonbrunn A. Inhibition of adrenocorticotropin secretion by somatostatin in pituitary cells in culture. Endocrinology 1981; 108: 281–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Reisine T. Multiple mechanisms of somatostatin inhibition of adrenocorticotropin release from mouse anterior pituitary tumor cells. Endocrinology 1985; 116: 2259–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Palmer JM, Zafirov DH, Nemth PR, Wood JD. Peptidergic modulation of excitability in myenteric plexus neurons [Abstract]. Dig Dis Sci 1985; 30: 786.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Chung Owyang
    • 1
  • John Wiley
    • 1
  1. 1.Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations