Regulation and Diversity of Peptide Hormone Gene Expression

  • Joel F. Habener
Part of the Serono Symposia, USA book series (SERONOSYMP)


During the past several years several fundamental advances have been made in our understanding of the cellular factors involved in the control of gene expression (1–4).


Bioactive Peptide Glucagon Gene Informational Molecule Biologic Diversification Glycoprotein Hormone Alpha 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown DD. Gene expression in eukaryotes. Science 1981; 211: 667–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Darnell JE. Variety in the level of gene control in eukaryotic cells. Nature 1982; 297: 365–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. New York: Garland, 1983.Google Scholar
  4. 4.
    Habener JF. Genetic control of hormone formation. In: Wilson J, Foster D, eds. Williams textbook of endocrinology. 7th ed. Saunders, 1985: 9–32.Google Scholar
  5. 5.
    Baxter JD, Ivarie RD. Regulation of gene expression by glucocorticoid hormones: studies of receptors and responses in cultured cells. Recept Horm Action 1978; 2: 251–84.Google Scholar
  6. 6.
    O’Malley B. Steroid hormone action in eukaryotic cells. J Clin Invest 1984; 74: 307–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Hakanson R, Thorell J, eds. Biogenetics of neuro-hormonal peptides. Orlando, FL: Academic Press, 1985.Google Scholar
  8. 8.
    Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature 1982; 296: 613–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubin RP. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev 1970; 22: 389–428.PubMedGoogle Scholar
  10. 10.
    Berridge MJ, Irvine RF. Insositol triphosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312: 315–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Cheung WY. Calmodulin plays a pivotal role in cellular regulation. Science 1980; 207: 19–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Heinrich G, Gros P, Habener JF. Glucagon gene sequence: four of six exons encode separate functional domains of rat pre-proglucagon. J Biol Chem 1984; 259: 14082–7.PubMedGoogle Scholar
  13. 13.
    Dayhoff MO. In: Atlas of protein sequence and structure. Washington, DC: Nat Biomed Res Found, 1978; 5(suppl 3).Google Scholar
  14. 14.
    Spindel ER, Zilberberg MD, Habener JF, Chin WW. Two prohormones for gastrin-releasing peptides are encoded by two mRNAs differing by 19 nucleotides. Proc Natl Acad Sci USA 1986; 83: 19–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 1983; 304: 129–36.PubMedCrossRefGoogle Scholar
  16. 16.
    Nawa H, Kotani H, Nakanishi S. Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 1984; 312: 20–7.CrossRefGoogle Scholar
  17. 17.
    Kitamura N, Takagaki Y, Furuto S, Tanaka T, Nawa H, Nakanishi S. A single gene for bovine high molecular weight and low molecular weight kininogens. Nature 1983; 305: 545–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Habener JF, Lund PK, Jacobs W, Dee PC, Goodman RH. Polypeptide precursors of regulatory peptides. In: Rich DH, Gross E, eds. Peptides: synthesis, structure, function. Rockford, IL: Pierce Chem; 1981: 457–69.Google Scholar
  19. 19.
    Chang ACY, Cochet M, Cohen SN. Structural organization of human genomic DNA encoding the pro-opiomelanocortin peptide. Proc Natl Acad Sci USA 1980; 77: 4890–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Mojsov S, Heinrich G, Wilson IB, Ravazolla M, Orci L, Habener JF. Divestification of preproglucagon gene expression in pancreas and intestine occurs at the level of post-translational processing. J Biol Chem 1986 (in press).Google Scholar
  21. 21.
    Marx JL. Antibodies: getting their genes together. Science 1981; 217: 1015–7.CrossRefGoogle Scholar
  22. 22.
    Hobart P, Crawford R, Shen L, Pictet R, Rutter WJ. Cloning and sequence analyses of cDNAs encoding two distinct somatostatin precursors in the endocrine pancreas of anglerfish. Nature 1980; 288: 137–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Magazin M, Minth CD, Funckes CL, Deschenes R, Tavianini MA, Dixon JE. Sequence of a cDNA encoding pancreatic presomatostatin-22. Proc Natl Acad Sci USA 1982; 79: 5152–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Tavianini MA, Hayes TE, Magazin MD, Minth CD, Dixon JE. Isolation, characterization and DNA sequence of the rat somatostatin gene. J Biol Chem 1984; 259: 11798–803.PubMedGoogle Scholar
  25. 25.
    Montminy MR, Goodman RH, Horovitch SJ, Habener JF. Primary structure of the gene encoding rat preprosomatostatin. Proc Natl Acad Sci USA 1984; 81: 3337–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Shen L-P, Rutter WL. Sequence of the human somatostatin I gene. Science 1984; 224: 168–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Shen L-P, Pictet RL, Rutter WL. Human somatostatin I: sequence of the cDNA. Proc Natl Acad Sci USA 1982; 79: 4575–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Goodman RH, Aron DC, Roos BA. Rat pre-prosomatostatin. J Biol Chem 1983; 258: 5570–3.PubMedGoogle Scholar
  29. 29.
    Reichlin S. Somatostatin. N Engl J Med 1983; 309: 1495–1501.CrossRefGoogle Scholar
  30. 30.
    Habener JF. Regulation of polypeptide-hormone biosynthesis at the level of the genome. Am J Physiol 1985; 249: C191–9.PubMedGoogle Scholar
  31. 31.
    Velcich A, Ziff E. Repression of activators. Nature 1984; 312: 594–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Britten RJ, Davidson EH. Gene regulation for higher cells: a theory. Science 1969; 165: 349–57.PubMedCrossRefGoogle Scholar
  33. 33.
    Davidson EH, Britten RJ. Regulation of gene expression: possible role of repetitive sequences. Science 1979; 204: 1052–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Reudelhuber T. Upstream and downstream control of eukaryotic genes. Nature 1984; 312: 700–1.PubMedCrossRefGoogle Scholar
  35. 35.
    Walker MD, Edlund T, Boulet AM, Rutter WJ. Cell-specific expression controlled by the 5’-flanking region of insulin and chymotrypsin genes. Nature 1983; 306: 557–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Joel F. Habener
    • 1
  1. 1.Laboratory of Molecular EndocrinologyMassachusetts General Hospital and Howard Hughes Medical Institute Harvard Medical SchoolBostonUSA

Personalised recommendations