Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 213))

Abstract

The induction of T lymphocyte proliferation is thought to involve cell-cell interaction and molecular communications (1). The nature of the intercellular communication on a cell-cell contact basis is not understood; what evidence is available points to important molecular communications. It is generally accepted that T cells are triggered to proliferate by two signals (Fig. 1). The mitogen in the relative but not complete absence of accessory cells can induce T cells to enter a G1 phase of the cell cycle from a resting G0 or “restricted” G1 phase of the cell cycle. This first stage of activation is associated with cellular enlargement or blastogenesis and both protein and RNA synthesis. The lymphocyte does not enter DNA synthesis (S phase) unless a second signal is presented. This second process is thought to be initiated by mitogen interaction directly or indirectly with adherent accessory cells, (i.e., monocytes/macrophages) which results in the production of interleukin 1 (IL-1). The IL-1 thus acts on T lymphocytes to induce the production on interleukin 2 (IL-2), and the appearance of cell surface receptors for IL-2. Little is known of the metabolic events associated with IL-1 and IL-2 action. T cells triggered by mitogen to enter the cell cycle transit aG1-S boundary as a result of the second signal and complete the cycle. The subsequent divisions do not require re-exposure to the mitogen but do require the presence of IL-2. The majority of the studies to date have concentrated on early events following mitogen addition to peripheral blood lymphocytes with the assumptions that the events occur in T cells and are contributory to the replication process.

This chapter is a condensed version of “Early Biochemical Events in T Lymphocyte Activation by Mitogens” by J.W. Hadden and R.G. Coffey in Immunoparmacology I (J.W. Hadden and A. Szentivanyi, eds.), Pergamon Press, New York, 1986. The reader is referred to this chapter for full referencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Hadden, and R. G. Coffey. Early biochemical events in T lymphocyte activation by mitogens. In Immunopharmacology I, J.W. Hadden & A. Szentivanyi, eds. Pergamon Press, (1986), in press.

    Google Scholar 

  2. M. F. Greaves, and S. Bauminger. Activation of T and B lymphocytes by insoluble phytomitogens. Nature New Biol. 235:67–70, (1972).

    Google Scholar 

  3. D. A. McClain, and G. M. Edelman. Analysis of the stimulation-inhibition paradox exhibited by lymphocytes. J. Exp. Med. 144:1494–1508, (1976).

    Article  Google Scholar 

  4. J. W. Hadden, E. M. Hadden, J. R. Sadlik, and R. G. Coffey. Effects of concanavalin a and a succinylated derivative on lymphocyte proliferation and cyclic nucleotide levels. Proc. Natl. Acad. Sci. 73:1717–1721, (1976).

    Article  ADS  Google Scholar 

  5. R. H. Micheli. Inositol phospholipids and cell surface receptor function. Biochem. Biophvs. Acta. 415:81–147, (1975).

    Article  Google Scholar 

  6. M. J. Berridge. Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220:345–360. (1984).

    Google Scholar 

  7. R. G. Coffey, and J. W. Hadden. Calcium and guanylate cyclase in lymphocyte activation. In Advances in Immunopharmacology 2, L. Chedid, J.W. Hadden, & A. Willoughby, eds. Pergamon Press, Oxford, (1983) pp 87–94.

    Google Scholar 

  8. J. W. Hadden, E. M. Hadden, and R. G. Coffey. Membrane events and guanylate cyclase in mitogen induced lymphocyte activation in leukotrienes. In Prostaglandins, Leukotrienes, & Lipoxins, J.M. Bailey, ed. Plenum Press, New York, (1985) pp 475–486.

    Chapter  Google Scholar 

  9. D. Y. Hui, and J. A. K. Harmony. Phosphatidylinositol turnover in mitogen-activated lymphocytes. Biochem. J. 192:91–98. (1980).

    Google Scholar 

  10. C. W. Parker, W. F. Stenson, M. G. Huber, and J. P. Kelly. Formation of thromboxane B2 and hydroxy arachidonic acids in purified human lymphocytes in the presence and absence of PHA. J. Immunol. 122:1572–1577, (1979).

    Google Scholar 

  11. Y. Nishizuka. The role of protein kinase C in cell surface transduction and tumor promotion. Nature 308:693–698, (1984).

    Article  ADS  Google Scholar 

  12. Y. Ogawa, Y. Takai, Y. Kawahara, S. Kimura, and Y. Nishizuka. A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. I. Characterization of a calcium-activated phospholipid-dependent protein kinase. J. Immunol. 127:1369–1374, (1981).

    Google Scholar 

  13. Y. Ku, A. Kishimoto, Y. Takai, Y. Ogawa, S. Kimure, and Y. Nishizuka. A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. II. Possible relation to phosphatidylinositol turnover induced by mitogens. J. Immunol. 127:1375–1379, (1981).

    Google Scholar 

  14. F. Hirata, S. Toyoshima, J. Axelrod, and M. F. Waxdal. Phospholipid methylation: A biochemical signal modulating lymphocyte mitogenesis. Proc. Natl. Acad. Sci. 77:862–865, (1980).

    Article  ADS  Google Scholar 

  15. J. P. Moore, G. A. Smith, T. R. Hesketh, and J. C. Metcalfe. Early increases in phospholipid methylation are not necessary for the mitogenic stimulation of lymphocytes. J. Biol. Chem. 257:8183–8189, (1982).

    Google Scholar 

  16. R. F. Ashman. The influence of cell interactions on early biochemical activation events in human mononuclear cells. Prog. Immunol. 5:339–348, (1984).

    Google Scholar 

  17. C. W. Parker, J. P. Kelly, S. F. Falkenhein, and M. G. Huber. Release of arachidonic acid from human lymphocytes in response to mitogenic lectins. J. Exp. Med. 149:1487–1503, (1979).

    Article  Google Scholar 

  18. J. Trotter and E. Ferber. CoA-dependent clevage of arachidonic acid from phosphatidylcholine and transfer to phosphatidylethanolamine in homogenates of murine thymocytes. FEBS Letters 128:237–241, (1981).

    Article  Google Scholar 

  19. K. Resch, M. Brennecke, M. Goppelt, V. Kaever, and M. Szamel. The role of phospholipids in the signal transmission of activated lymphocytes. Prog. Immunol. V:349–360, (1984).

    Google Scholar 

  20. E. J. Goetzl. Selective feed-back inhibition of the 5-lipoxygenation of arachidonic acid in human T-lymphocytes. Biochem. Biophvs. Res. Commun. 101:344–350, (1981).

    Article  Google Scholar 

  21. M. E. Goldyne. The generation of 5-lipoxygenase-derived arachidonic acid metabolites among human lymphocytes and monocytes. Prostaglandins and Leukotrienes ’84 — Abstracts of the Fourth Int. Washington Spring Symposium, (1984).

    Google Scholar 

  22. J. M. Bailey, R. W. Bryant, E. C. Low, M. B. Pupillo, and J. Y. Vanderhoek. Role of lipoxygenases in regulation of PHA and phorbol ester-induced mitogensis. Adv. Prostaglandins Thromboxanes Leukotrienes Res. 9:341–353, (1982).

    Google Scholar 

  23. R. G. Coffey and J. W. Hadden. Stimulation of lymphocyte guanylate cyclase by HETEs. In Prostaglandins, Leudotrienes, and Lipoxins, J. M. Bailey, ed. Plenum Press, New York (1985) pp 501–509.

    Chapter  Google Scholar 

  24. N. Gualde, D. Atluru, and J. Goodwin. Effect of lipoxygenase metabolites of arachidonic acid on proliferation of human T cells and T cell subsets. J. Immunol. 134:1125–1128, (1985).

    Google Scholar 

  25. G. B. Segel, M. M. Hollander, B. R. Gordon, M. R. Klemperer, and M. A. Lichtman. A rapid phytohemagglutinin induced alteration in lymphocyte potassium permeability. J. Cell Physiol. 86:327–335, (1975).

    Article  Google Scholar 

  26. K. G. Chandy, T. E. DeCoursey, M. D. Cahalan, C. McLaugulin, and S. Gupta. Voltage-gated potassium channels are required for human T lymphocyte activation. J. Exp. Med. 160:369–385, (1984).

    Article  Google Scholar 

  27. D. F. Gerson, H. Kiefer, and W. Eufe. Intracellular pH of mitogen-stimulated lymphocytes. Science 216:1009–1010, (1982).

    Article  ADS  Google Scholar 

  28. M. F. Berridge. The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv. Cyclic Nucleotide Res. 6:1–98, (1975).

    Google Scholar 

  29. D. A. Hume and M. F. Wiedemann. Intracellular second messengers in mitogenic lymphocyte transformation. Research Monography. Immunology 2:183–225, (1980).

    Google Scholar 

  30. R. Hesketh. Cation fluxes and lymphocyte transformation. In The Molecular Basis of Immune Cell Function, J. Gordin Kaplin, ed. Elservier/North-Holland Biomedical Press, Amsterdam (1978) pp 39–56.

    Google Scholar 

  31. J. C. Metcalfe, T. Pozzan, G. A. Smith, and T. R. Hesketh. A calcium hypothesis for control of cell growth. Biochem. Soc. Svmp. 45:1–26, (1980).

    Google Scholar 

  32. W. C. Greene, C. M. Parker, and C. W. Parker. Calcium and lymphocyte activation. Cell Immunol. 25:74–89. (1976).

    Article  Google Scholar 

  33. T. R. Hesketh, G. A. Smith, M. D. Housley, G. B. Warren, and J. C. Metcalf. Is an early calcium flux necessary to stimulate lymphocytes? Nature 267:490–494, (1977).

    Article  ADS  Google Scholar 

  34. M. H. Freedman, N. R. Khan, B. J. Frew-Marshall, C. G. Cupples, and B. Mely-Goubert. Early biochemical events in lymphocyte activation. Cell Immunol. 58:134–146, (1981).

    Article  Google Scholar 

  35. R. Y. Tsien, T. Pozzan, and T. J. Rink. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295:68–70, (1982).

    Article  ADS  Google Scholar 

  36. C. W. Parker, T. F. Sullivan, and J. H. Wedner. Cyclic AMP and the immune response. Adv. Cyclic Nucleotide Res. 4:1–80, (1974).

    Google Scholar 

  37. H. J. Wedner and C. W. Parker. Lymphocyte Activation. Prog. Allergy 20:195–300, (1976).

    Article  Google Scholar 

  38. T. B. Strom, A. P. Lundin, and C. B. Carpenter. The role of cyclic nucleotides in lymphocyte activation and function. Prog. Clin. Immunol. 3:115–153, (1977).

    Google Scholar 

  39. J. W. Hadden and R. G. Coffey. Cyclic nucleotides in mitogen induced lymphocyte proliferation. Immunology Today 3:299–304. (1982).

    Article  Google Scholar 

  40. J. W. Smith, A. L. Steiner, W. M. Newberry, and C. W. Parker. Cyclic adenosine 3′,5′-monosphosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation. J. Clin. Invest. 50:432–441, (1971).

    Article  Google Scholar 

  41. W. C. Greene, C. M. Parker, and C. W. Parker. Opposing effects of mitogenic and nonmitogenic lectins on lymphocyte activation. J. Biol. Chem. 251:4017–4025, (1976).

    Google Scholar 

  42. J. W. Hadden, E. M. Hadden, M. K. Haddox, and N. D. Goldberg. Guanosine 3′,5′-cyclic monophosphate: A possible intracellular mediator of mitogen influences in lymphocytes. Proc. Natl. Acad. Sci. 69:3024–3027, (1972).

    Article  ADS  Google Scholar 

  43. J. Ohara and T. Watanabe. Microinjection of macromolecules into normal murine lymphocytes by cell fusion technique. I. Quantitative microinjection of antibodies into normal splenic lymphocytes. J. Immunol. 128:1090–1096, (1982).

    Google Scholar 

  44. F. E. Bloom, H. Wedner, and C. W. Parker. The use of antibodies to study cell structure and metabolism. Pharmacol. Rev. 25:343–358, (1973).

    Google Scholar 

  45. C. V. Byus, G. R. Klimpel, D. O. Lucas, and D. H. Russell. Ornithine decarboxylase induction in mitogen-stimulated lymphocytes is related to the specific activation of type I adenosine cyclic 3′,5′-monophosphate-dependent protein kinase. Mol. Pharmacol. 14:431–441, (1978).

    Google Scholar 

  46. M. T. Largen and B. Votta. Immunocytochemical evidence for 3′,5′-cGMP and 3′,5′-cGMP-dependent protein kinase involvement in lymphocyte proliferation. J. Cyclic Nucl. Prot. Phosphor. Res. 9:231–244, (1983).

    Google Scholar 

  47. M. I. Mednieks and R. A. Jungmann. Selective expression of type I and type II cyclic AMP-dependent protein kinases in subcellular fractions of concanavalin A-stimulated rat thymocytes. Arch. Biochem. Biophvs. 213:127–138, (1982).

    Article  Google Scholar 

  48. N. D. Goldberg, G. Graff, M. K. Haddox, J. H. Stephenson, D. B. Glass, and M. E. Moser. Redox modulation of splenic cell soluble guanylate cyclase activity: Activation by hydrophilic and hydrophobic oxidants represented by ascorbic and dehydroascorbic acids, fatty acid, hydroperoxides and prostagliadin endoperoxides. Adv. Cyclic Nucleotide Res. 9:101–130, (1978).

    Google Scholar 

  49. R. Ananthakrishnan, R. G. Coffey, and J. W. Hadden. Cyclic GMP and calcium in lymphocyte activation by phytohemagglutinin. Human Lymphocyte Differentiation 1:183–196, (1981).

    Google Scholar 

  50. L. D. Johnson and J. W. Hadden. Modification of human DNA-dependent RNa of lymphocyte nuclear acidic polymerase by cyclic GMP. Nucleic Acid Res. 4:4007–4014, (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Hadden, J.W. (1987). Transmembrane Signals in the Activation of T Lymphocytes. In: Gupta, S., Paul, W.E., Fauci, A.S. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation. Advances in Experimental Medicine and Biology, vol 213. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5323-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5323-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5325-6

  • Online ISBN: 978-1-4684-5323-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics