Advertisement

The Early Mitogenic Pathway in Mouse Thymocytes: An Analysis of the Dual Signal Hypothesis

  • James C. Metcalfe
  • Gerry A. Smith
  • John P. Moore
  • Robin Hesketh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)

Abstract

The sequence of intercellular responses in mouse thymocytes to a polyclonal mitogen, such as concanavalin A (Con A), that are analyzed in this contribution are summarized in Table I. The earliest responses that free Ca2+ concentrations ([Ca2+]i) (1) within a few seconds of the addition of Con A and a coincident breakdown of phosphatidyl inositol (4,5) bisphosphate (PtdInsP2) to release inositol trisphosphate (InsP3) (2). These responses are followed by a rise in intracellular pH (pHi) (3) and increased synthesis of PtdInsp2 and its precursor, PtdInsP (2). After an approximately 10 time longer delay there is a large increase in the amount of mRNA of specific proto-oncogenes: a transient increase in c-fos mRNA (4) precedes the persistent increase in the amount of c-mvc mRNA (5). Over about the same time scale in G1 there is a general stimulation of metabolism marked, for example, by an increase in glycolysis (6), the transport of metabolites into the cell (uridine, etc., (7)) and the incorporation of inositol into PtdIns (8). These responses are followed later in G1 by a general increase in RNA and protein synthesis (9). The three groups of responses in Table I therefore provide markers of stages in progression through G1.

Keywords

Inositol Phosphate Phosphatidyl Inositol Mitogenic Stimulation Mouse Thymocyte Mitogenic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. R. Hesketh, G. A. Smith, J. P. Moore, M. V. Taylor, and J. C. Metcalfe. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J. Biol. Chem. 258:4876, (1983).Google Scholar
  2. 2.
    M. V. Taylor, J. C. Metcalfe, T. R. Hesketh, G. A. Smith, and J. P. Moore. Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature 312:462, (1984).ADSCrossRefGoogle Scholar
  3. 3.
    T. R. Hesketh, J. P. Moore, J. D. H. Morris, M. V. Taylor, J. Rogers, G. A. Smith, and J. C. Metcalfe. A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature 313:481, (1985).ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Moore, J. Todd, T. R. Hesketh, and J. C. Metcalfe, c-mvc gene activation, ionic signals and DNA synthesis in thymocytes. J. Biol. Chem.. in press.Google Scholar
  5. 5.
    K. Kelly, B. H. Cochran, C. D. Stiles, and P. Leder. Cell specific regulation of the c-mvc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603, (1983).CrossRefGoogle Scholar
  6. 6.
    D. Roos, and J. A. Loos. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. relative importance of glycolysis and oxidative phosphorylation on PHA stimulation. Exp. Cell Res. 77:127, (1973).CrossRefGoogle Scholar
  7. 7.
    J. H. Peters, and P. Hausen. Effect of PHA on lymphocyte membrane transport. I. Stimulation of uridine uptake. Eur. J. Biochem. 19:502, (1971).CrossRefGoogle Scholar
  8. 8.
    D. B. Fisher, and G. C. Mueller. Studies on the mechanism by which PHA rapidly stimulates phospholipid metabolism of human lymphocytes. Biochem. Biophvs. Acta. 248:434, (1971).CrossRefGoogle Scholar
  9. 9.
    N. R. Ling, and J. E. Kay. Lymphocyte Stimulation. North-Holland, Amsterdam, (1975).Google Scholar
  10. 10.
    D. A. Morgan, F. W. Ruscetti, and R. Gallo. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007, (1976).ADSCrossRefGoogle Scholar
  11. 11.
    J. J. Farrar, W. R. Benjamin, M. L. Hilfiker, M. Howard, and J. Fuller-Farrar. The biochemistry, biology and role of interleukin 2 in the induction of cytotoxic T cell and antibody-forming B cell responses. Immunol. Revs. 63:129, (1982).CrossRefGoogle Scholar
  12. 12.
    D. A. Cantrell and K. A. Smith. Transient expression of interleukin 2 receptors. Consequences for T cell growth. J. Exp. Med. 158:1895, (1983).CrossRefGoogle Scholar
  13. 13.
    J. C. Metcalfe, T. R. Hesketh, G. A. Smith, J. D. H. Morris, A. N. Corps, and J. P. Moore. Early response pattern analysis of the mitogenic pathway in lymphocytes and fibroblasts. J. Cell Sci. Suppl. 3:199, (1985).Google Scholar
  14. 14.
    I. Novak-Hofer and G. Thomas. EGF-mediated actication of an S6 kinase in Swiss mouse 3T2 cells. J. Biol. Chem. 260:10314, (1985).Google Scholar
  15. 15.
    P. J. Parker, M. Katan, M..D. Waterfield, and D. P. Leader. The phosphorylation of eukaryotic ribosomal protein kinase. C. Eur. J. Biochem 148:579 (1985).CrossRefGoogle Scholar
  16. 16.
    I. Sussman, R. Prettyman, and T. G. O’Brien. Phorbol esters and gene expression: the role of rapid changes in K+ transport in the induction of ornithine decarboxylase by TPA in BALB/c 3T3 cells and a mutant cell line defective in Na+/K+/Cl- transport. J. Cell Biol. 101:2316, (1985).CrossRefGoogle Scholar
  17. 17.
    M. Lindau and J. M. Fernandez. IgE-mediated degranulation of mast cells does not require opening of ion channels. Nature 319:150, (1986).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Nishizuka. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693, (1984).ADSCrossRefGoogle Scholar
  19. 19.
    M. J. Berridge and R. F. Irvine. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315, (1984).ADSCrossRefGoogle Scholar
  20. 20.
    T. R. Hesketh, S. Bavetta, G. A. Smith, and J. C. Metcalfe. Duration of the calcium signal in the mitogenic stimulation of thymocytes. Biochem J. 214:575 (1983).Google Scholar
  21. 21.
    G. M. Brugess, J. S. McKinney, J. S. Irvine, and J. W. Putney. Inositol 1,4 5-trisphosphate and inosital 1,3,4-trisphosphate formation in Ca2+ -mobilizing-hormone-activated cells. Biochem. J. 232:237, (1985).Google Scholar
  22. 22.
    R. F. Irvine, E. E. Anggard, A. J. Letcher and C. P. Downes. Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem. J. 229:505, (1985).Google Scholar
  23. 23.
    I. R. Batty, S. R. Nahorski and R. F. Irvine. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following nuscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232:211, (1985).Google Scholar
  24. 24.
    J. P. Heslop, R. F. Irvine, A. H. Tashjian, and M. J. Berridge. Inositol tetrakis-and pentakisphosphates in GH4 cells. J. Exp. Bio. 119:395, (1985).Google Scholar
  25. 25.
    L. E. Samelson, J. Harford, R. H. Schwartz, and R. D. Klausner. A 20-kDa protein associated with the murine T-cell antigen receptor is phosphorylated in response to activation by antigen or concanavalin A. Proc. Natl. Acad. Sci. USA. 82:1969, (1985).ADSCrossRefGoogle Scholar
  26. 26.
    J. Pouyssegur, A. Franchi, G. L’Allemain, and S. Paris. Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Letts. 190:115, (1985).CrossRefGoogle Scholar
  27. 27.
    J. C. Chambard and J. Pouyssegur. Exp. Cell Res. in press, (1985).Google Scholar
  28. 28.
    G. B. Mills, E. J. Cragoe, E. W. Gelfand, and S. Grinstein. Interleukin 2 induces a rapid increase in intracellular pH through activation of a Na+/H+ antiport. J. Biol. Chem. 260:12500, (1985).Google Scholar
  29. 29.
    L. Kaczmarek, J. K. Hyland, R. Watt, M. Rosenberg, and R. Baserga. Microinjected c-mvc as a copetence factor. Science 228:1313. (1985).ADSCrossRefGoogle Scholar
  30. 30.
    K. Kaibuchi, Y. Takai, and Y. Nishizuka. Protein kinase C and calcium ion in mitogenic response of macrophage-depleted human peripheral lymphocytes. J. Biol. Chem. 260:1366. (1985).Google Scholar
  31. 31.
    J. P. Moore, G. A. Smith, T. R. Hesketh, and J. C. Metcalfe. Early increases in phospholipid methylation are not necessary for the mitogenic stimulation of lymphocytes. J. Biol. Chem. 257:8183, (1982).Google Scholar
  32. 32.
    G. A. Smith, T. R. Hesketh, J. C. Metcalfe, J. Feeney, and P. G. Morris. Intracellular calcium measurements by FNMR of fluorine-labeled chelators. Proc. Natl. Acad. Sci. USA 80:7178, (1983).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • James C. Metcalfe
    • 1
  • Gerry A. Smith
    • 1
  • John P. Moore
    • 1
  • Robin Hesketh
    • 1
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations