Correspondence Between Functionally Significant Sequences in Immunoglobulin and the T Cell Receptor for Antigen

  • Stephen M. Hedrick
  • Isaac Engel
  • Pamela J. Fink
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)


Much has been written about the “dual recognition” properties of the T cell receptor, and in a simplistic sense, the immune recognition of T cells is fundamentally different from the recognition properties of immunoglobulin molecules or peptide receptors in general. The unusual feature of the T cell antigen receptor is that it recognizes and presumably binds to two separate molecules located on the surface of B cells or macrophage/dendritic cells. One of these molecules is always a major histocompatibility complex (MHC)-encoded molecule, and the other is usually a polypeptide antigen. The structure of a receptor that recognizes two separate molecules has been the topic of many speculative theories; most of these theories have concentrated on the number of receptor subunits, the number of binding sites, and the affinity of the receptor for the various ligend components. The topic of this report concerns the overall structure of the T cell antigen receptor as determined by gene cloning and DNA sequencing, and the structure of the T cell receptor variable region domains expressed by T cells specific for defined antigens. These data indicate that the structure of the T cell antigen receptor is analogous to that of immunoglobulin molecules, and the same principles of antigen recognition apply to each.


Major Histocompatibility Complex Cell Clone Major Histocompatibility Complex Molecule Beta Chain Cell Antigen Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Allison, B. W. McIntyre, and D. Bloch. Tumor-specific antigen of murine T-lymphoma defined with monoclonal antibody. J. Immunol. 129:2293, (1982).Google Scholar
  2. 2.
    S. C. Mauer, K. A Fitzgerald, R. E. Hussey, J. C. Hodgdon, S. F. Schlossman, and E. L. Reinherz. Clonotypic structures involved in antigen-specifc human T cell function. J. Exp. Med. 157:705, (1983).CrossRefGoogle Scholar
  3. 3.
    K. Haskins, R. Kubo, J. White, M. Pigeon, J. Kappler, and P. Marrack. The major histocompatibility complex-restricted antigen receptor on T cells I, Isolation with a monoclonal antibody. J. Exp. Med. 157:P1149, (1983).CrossRefGoogle Scholar
  4. 4.
    J. Kaye, S. Porcelli, J. Tite, B. Jones, and C. A. Janeway Jr. Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen presenting cells in the activation of T cells, J. Exp. Med. 158:836, (1983).CrossRefGoogle Scholar
  5. 5.
    L. E. Samelson, R. N. Germain, and R. H. Schwartz. Monoclonal antibodies against the antigen receptor on a cloned T cell hybrid. Proc. Natl. Acad. Sci. USA 80:P6972, (1983).ADSCrossRefGoogle Scholar
  6. 6.
    P. Marrack, R. Shimonkevitz, C. Hannum, K. Haskins, and J. Kappler. The major histocompatibility complex-restricted antigen receptor on T cells IV. An antidiotypic antibody predicts both antigen and I-specificity. J. Exp. Med. 158:1635, (1983).CrossRefGoogle Scholar
  7. 7.
    J. Yaggue, J. White, C. Coleclough, J. Kappler, E. Palmer, and P. Marrack. The T cell receptor: The and chains define idiotype, and antigen and MHC specificity. Cell 42:81, (1985).CrossRefGoogle Scholar
  8. 8.
    Z. Dembic, W. Haas, S. Weiss, J. McCubrey, H. Kiefer, H. von Boehmer, and M. Steinmetz. Transfer of specificity by murine and T cell receptor genes. Nature 320:232, (1986).ADSCrossRefGoogle Scholar
  9. 9.
    E. L. Reinherz, S. Meuer, K. A. Fitzgerald, R. E. Hussey, H. Levine, S. F. Schlossman. Antigen recognition by human T lymphocytes is linked to surface expression of the T3 molecular complex. Cell 30:735, (1982).CrossRefGoogle Scholar
  10. 10.
    P. S. Ohashi, T. W. Mak, P. van den Elsen, Y. Ysanagi, Y. Yoshikai, A. F. Caiman, C. Terhorst, J. D. Stobo, and A. Weiss. Reconstitution of an active surface T3/T cell antigen receptor by DNA transfer. Nature 316:606, (1985).ADSCrossRefGoogle Scholar
  11. 11.
    J. P. Allison, and L. L. Lanier. Identification of antigen receptor associated structures on murine T cells. Nature 314:107, (1985).ADSCrossRefGoogle Scholar
  12. 12.
    H. C. Oettgen, C. L. Pettey, W. L. Maloy, and C. Terhorst. A T3-like protein complex associated with the antigen receptor on murine T cells. Nature 320:272, (1986).ADSCrossRefGoogle Scholar
  13. 13.
    J. L. Greenstein, B. Malissen, and S. J. Burakoff. Role of L3T4 in antigen-driven activation of class I-specific T cell hybridoma. J. Exp. Med. 162:369, (1985).CrossRefGoogle Scholar
  14. 14.
    S. M. Hedrick, D. I. Cohyen, E. A. Nielsen, and M. M. Davis. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:149, (1984).ADSCrossRefGoogle Scholar
  15. 15.
    S. M. Hedrick, E. A. Nielsen, J. Kiavaler, D. I. Cohen, and M. M. Davis. Sequence relationships between putative T cell receptor polypeptides and immunoglobulins. Nature 308:153. (1984).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Yanagi, Y. Yoshikai, K. Leggett, S. P. Clark, I. Aleksander, and T. W. Mak. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308:145, (1984).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Chien, D. M. Becker, T. Lindsten, M. Okamura, D. I. Cohen, and M. M. Davis. A third type of murine T cell receptor gene. Nature 312:31, (1984).ADSCrossRefGoogle Scholar
  18. 18.
    H. Saito, D. M. Kranz, Y. Takagaki, A. C. Hayday, H. N. Eisen, and S. Tonegawa. A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes. Nature 312:36, (1984).ADSCrossRefGoogle Scholar
  19. 19.
    H. Sakano, J. H. Rogers, K. Huppi, C. Brack, A. Taunecker, R. Maki, R. Wall, and S Tonegawa. Domains and the hinge region of an immunoglobulin heavy chain are encoded in separate DNA segments. Nature 277:627, (1979).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Chien, N. R. J. Gascoigne, J. Kavaler, N. E. Lee, and M. M. Davis. Somatic recombination in amurine T cell receptor gene. Nature 309:P322, (1984).ADSCrossRefGoogle Scholar
  21. 21.
    G. D. Yancopoulos, T. K. Blackwell, H. Suh, L. Hood, and F. W. Alt. Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase. Cell 44:251, (1986).CrossRefGoogle Scholar
  22. 22.
    P. Patten, T. Yokota, J. Rothbard, Y. Chien, K. Arai, and M. M. Davis. Structure, expression and divergence of T cell receptor chain variable regions. Nature 312:40, (1984).ADSCrossRefGoogle Scholar
  23. 23.
    D. M. Becker, P. Patten, Y. Chien, T. Yokota, Z. Eshbar, M. Giedlin, N. R. J. Gasocigne, C. Goodnow, R. Wolf, K. Arai, and M. M. Davis. Variability and repertoire size of T cell receptor V gene segments. Nature 317:430, (1985).ADSCrossRefGoogle Scholar
  24. 24.
    R. K. Barth, B. S. Kim, N. C. Lan, T. Hunkapiller, N. Sobieck, A. Winoto, H. Gershenfeld, C. Okada, D. Hansburg, I. L. Weissman, and L. Hood. The murine T cell receptor uses a limited repertoire of expressed V gene segments. Nature 316:517, (1985).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Behike, D. G. Spinella, H. S. Chou, W. Sha, D. L. Hartl, and D. Y. Loi. Dependence on relatively few variable region genes. Science 229:566, (1985).ADSCrossRefGoogle Scholar
  26. 26.
    B. Arden, J. L. Klotz, G. Siu, and L. E. Hood. Diversity and structure of genes of the family of mouse T cell antigen receptor. Nature 316:783, (1985).ADSCrossRefGoogle Scholar
  27. 27.
    J. Deisenhofer, and R. Huber. The contribution of X-ray crystallography to our understanding of immunoglobulin function. Prog. Immunol. V:47, (1983).Google Scholar
  28. 28.
    D. R. Davies, and H. Metzger. Structural basis of antibody function. Ann. Rev. Immunol. 1:87, (1983).CrossRefGoogle Scholar
  29. 29.
    T. T. Wu, and E. A. Kabat. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med 132:211, (1970).CrossRefGoogle Scholar
  30. 30.
    E. A. Kabat. The antibody combining site. Prog. Immunol. V:67, (1983).Google Scholar
  31. 31.
    P. J. Fink, L. A. Matis, D. L. McElligott, M. Bookman, and S. M. Hedrick. Correlations between T cell specificity and the structure of the antigen receptor. Nature, in press, (1986).Google Scholar
  32. 32.
    L. A. Matis, S. M. Hedrick, C. Hannum, M. E. Ultee, D. Lebwohl, E. Margoliash, A. M. Solinger, E. A. Lerner, and R. H. Schwartz. The T lymphocyte response to cytochrome C. III. Relationship of the fine specificity of antigen recognition to major histocompatibility complex genotype. J. Immunol. 128:2439, (1983)Google Scholar
  33. 33.
    S. M. Hedrick, L. A. Matis, T. T. Hecht, L. E. Samelson, D. L. Longo, E. Heber-Katz, and R. H. Schwartz. The fine specificity of antigen and a determinant recognition by T cell hybridoma clones specific for pigeon cytochrome c. Cell 30:141, (1982)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Stephen M. Hedrick
    • 1
  • Isaac Engel
    • 1
  • Pamela J. Fink
    • 1
  1. 1.Department of Biology and Cancer CenterUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations