Regulation of Activation and Proliferation of Human Natural Killer Cells

  • Giorgio Trinchieri
  • Lucille London
  • Michiko Kobayashi
  • Bice Perussia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)


Human peripheral blood lymphocytes from all healthy donors are able to lyse in vitro a variety of target cells, including normal, tumor-derived and virus-infected cells, in the absence of previous sensitization against target cell antigens (1). Although lymphocytes from different donors show a large variability in their cytotoxic ability, the rank of cytotoxicity against different target cell lines depends on the susceptibility of the cell lines to the cytotoxic cells and not on the individual variations among lymphocyte donors. Unlike specific cytotoxicity mediated by cytotoxic T cells, this natural cytotoxicity is not restricted by antigens of the major histocompatibility complex (HMC). The human target cell line most used as a target, the myeloerythro leukemic K562 line, expresses neither class I nor class II MHC antigens. The effector cells responsible for this spontaneous cytotoxicity have been defined natural killer (NK) cells and morphologically identified as large granular lymphocytes (LGL). LGL are light density medium- to large-sized lymphocytes characterized by abundant cytoplasm, indented nucleus and few distinct azurophilic granules (2). Separation of lymphocytes on Percoli gradients has been extensively used to obtain enriched preparations of LGL (3). Although this technique was instrumental for much of our advanced knowledge of NK cell biology. LGL preparations obtained with Percoli gradients are not pure NK cells and the contaminant cell types, even if present in a low proportion, have often been responsible for artifactual results and erroneous attributions of functions to NK cells.


Natural Killer Natural Killer Cell Large Granular Lymphocyte Human Natural Killer Cell Cell Antigen Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Trinchieri and B. Perussia. Human natural killer cells: biologic and pathologic aspects. Lab. Invest. 50:489, (1984).Google Scholar
  2. 2.
    T. Timonen, J. R. Ortaldo and R. B. Herberman. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J. Exp. Med. 153:569, (1981).CrossRefGoogle Scholar
  3. 3.
    T. Timonen and E. Saksela. Isolation of human natural killer cells by density gradient centrifugation. J. Immunol. Methods 36:285, (1980).CrossRefGoogle Scholar
  4. 4.
    O. Haller and H. Wigzell. Suppression of natural killer cell activity with radioactive strontium: effector cells are marrow dependent. J. Immunol. 118:1503, (1977).Google Scholar
  5. 5.
    P. S. Hochman, G. Cudkowicz, and J. Dausset. Decline of natural killer cell activity in sublethally irradiated mice. J. Natl. Cancer Inst. 61:265, (1978).Google Scholar
  6. 6.
    B. Perussia, S. Starr, S. Abraham, V. Fanning, and G. Trinchieri. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor function. I. Characterization of the lymphocyte subset reactive with B73.1. J. Immunol. 130:2133, (1983).Google Scholar
  7. 7.
    J. M. Ward, F. Argilan, and C. W. Reynolds. Immunoperoxidase localization of large granular lymphocytes in normal tissue and lesions of athymic nude rats. J. Immunol. 131:132, (1983).Google Scholar
  8. 8.
    J. Tarkkanen and E. Saksela. Umbilical-cord-blood-derived suppressor cells of the human natural killer cells activity are inhibited by interferon. Scand. J. Immunol. 15:149, (1982).CrossRefGoogle Scholar
  9. 9.
    Z. Brahmi, J. E. Thomas, M. Park, M. Park, and I. R. G. Dowdeswell. The effect of acute exercise on natural killer-cell activity of trained and sedentary human subjects. J. Clin. Immun. 5:321, (1985).CrossRefGoogle Scholar
  10. 10.
    E. Gorelik and R. B. Herberman. Depression of natural antitumor resistance of C57BL/6 mice by leukomogenic doses of radiation and restoration of resistance by transfer of bone marrow or spleen cells from normal, but not beige, syngeneic mice. J. Natl. Cancer Inst. 69:89, (1982).Google Scholar
  11. 11.
    N. Hanna and R. C. Burton. Definitive evidence that natural killer (NK) cells inhibit experimental tumor metastasis in vivo. J. Immunol. 127:1754, (1981).Google Scholar
  12. 12.
    R. M. Welsh. Natural cell mediated immunity during virus infection. In Natural Resistance to Tumors and Viruses, O. Haller ed. Springer-Verlag, Berlin, p 83 (1983).Google Scholar
  13. 13.
    L. U. Abruzzo and D. A. Rowley. Homeostasis of the antibody response: immunoregulation by NK cells. Science 222:585, (1983).ADSCrossRefGoogle Scholar
  14. 14.
    G. Cudkowicz and P. S. Hochman. Do natural killer cells engage in regulated reaction against self to ensure homeostasis? Immunol. Rev. 44:13, (1979).CrossRefGoogle Scholar
  15. 15.
    M. Hansson, M. Beran, B. Andersson, and R. Kiessling. Inhibition of invitro granulo-poiesis by autologous and allogeneic human NK cells. J. Immunol. 129:126, (1982).Google Scholar
  16. 16.
    G. Degliantoni, B. Perussia, L. Mangoni, and G. Trinchieri. Inhibition of bone marrow colony formation by human natural killer cells and by natural killer cell-derived colony inhibiting activity. J. Exp. Med. 161:1152, (1985).CrossRefGoogle Scholar
  17. 17.
    B. Perussia, G. Trinchieri, A. Jackson, N. L. Warner, J. Faust, H. Rumpold, and L. L. Lanier. The Fc receptor for IgG on human natural killer cells: phenotypic, functional and comparative studies using monoclonal antibodies. J. Immunol. 133:180, (1984).Google Scholar
  18. 18.
    L. D. Fast, J. A. Hansen, and W. Newman. Evidence for T cell nature and heterogeneity within natural killer (NK) and antibody-dependent cellular cytotoxicity (ADCC) effectors: a comparison with cytotoxic T lymphocytes (CTL). J. Immunol. 127:448, (1981).Google Scholar
  19. 19.
    R. E. Schmidt, T. Hercend, D. A. Fox, A. Bensussan, G. Bartley, J. F. Daley, S. F. Schlossman, E. L. Reinherz, and J. Ritz. The role of interleukin 2 and THE rosette antigen in activation and proliferation of human NK clones. J. Immunol. 135:672, (1985).Google Scholar
  20. 20.
    S. C. Meuer, R. E. Hussey, M. Fabbi, D. Fox, O. Acuto, K. A. Fitzgerald, J. C. Hodgdon, J. P. Protentis, S. F. Schlossman, and E. L. Reinherz. An alternative pathway of T-cell activation: a functional role for the 50KD T11 sheep erythrocyte receptor protein. Cell 36:897, (1984).CrossRefGoogle Scholar
  21. 21.
    R. L. H. Bolhuis, G. Gravekamp, and R. J. van de Griend. Blocking and induction of MHC restricted and non-restricted cytolysis in T3+ T11+ and T3- T11+ clones via the 50KD sheep erythrocyte binding receptor is T3/Ti independent. J. Immunol. in press (1986).Google Scholar
  22. 22.
    B. Perussia, V. Fanning, and G. Trinchieri. A human NK and K cell subset shares with cytotoxic T cell expression of the antigen recognized by antibody OKT8. J. Immunol. 131:223, (1983).Google Scholar
  23. 23.
    R. J. van de Griend, B. A. van Krimpen, C. P. M. Ranteltap, and R. L. H. Bolhuis. Rapidly expanded activated human killer clones have strong antitumor cell activity and have the surface phenotype of either T, T-non-, or null cells. J. Immunol. 132:3185, (1984).Google Scholar
  24. 24.
    J. F. H. Leeuwenberg, H. Spits, W. J. M. Tax, and P. J. A. Capel. Induction of non-specific cytotoxicity by monoclonal anti-T3 antibodies. J. Immunol. 134:3770, (1985).Google Scholar
  25. 25.
    R. L. H. Bolhuis and R. J. van de Griend. Phytohemagglutinin-induced proliferation and cytolytic activity in T3+ but not in T3- cloned T lymphocytes requires the involvement of the T3 antigen for signal transmission. Cellular Immunol. 93:46, (1985).CrossRefGoogle Scholar
  26. 26.
    T. Hercend, S. F. Meuer, A. Brennan, M. A. Edson, O. Acuto, E. L. Reinherz, S. F. Schlossman, and J. Ritz. Identification of a clonally restricted 90KD hetorodimer on two human cloned natural killer cell lines. Its role in cytotoxic effector functions. J. Exp. Med. 158:1547, (1983).CrossRefGoogle Scholar
  27. 27.
    L. L. Lanier, S. Cwirla, N. Federspiel, and J. H. Phillips. Human natural killer cells isolated from peripheral blood do not rearrange T cell antigen receptor chain genes. J. Exp. Med. 163:209, (1986).CrossRefGoogle Scholar
  28. 28.
    J. Ritz, T. J. Campen, R. E. Schmidt, H. D. Royer, T. Hercend, R. E. Hussey, and E. L. Reinherz. Analysis of T-cell receptor gene rearrangement and expression in human natural killer cell clones. Science 228:1540, (1985).ADSCrossRefGoogle Scholar
  29. 29.
    C. W. Reynolds, M. Bonyadi, R. B. Herberman, H. A. Young, and S. M. Hedrick. Lack of gene rearrangement and mRNA expression of the B chain of the T cell receptor in spontaneous rat large lymphocyte leukemia lines. J. Exp. Med. 161:1249, (1985).CrossRefGoogle Scholar
  30. 30.
    G. Trinchieri, M. Matsumoto-Kobayashi, S. C. Clark, J. Sheehra, L. London, and B. Perussia. Response of resting human peripheral blood natural killer cells to interleukin 2. J. Exp. Med. 160:1147, (1984).CrossRefGoogle Scholar
  31. 31.
    H. D. Kay, and D. A. Horwitz. Evidence by reactivity with hybridoma antibodies for a probably myeloid origin of peripheral blood cells active in natural cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Clin. Invest. 66:847, (1980).CrossRefGoogle Scholar
  32. 32.
    B. Perussia, G. Trinchieri, and J. C. Cerottini. Functional studies of Fc receptor-bearing human lymphocytes: effect of treatment with proteolytic enzymes. J. Immunol. 123:681, (1979).Google Scholar
  33. 33.
    F. Malavasi, C. Tetta, A. Funaro, G. Beelone, E. Ferrero, A. Colli Franzone, P. Dellabona, R. Rusci, G. Camussi, and F. Caligaris-Cappio: Fc receptor triggering induces expression of surface activation antigens and release of platelet activating factor in large granular lymphocytes. Proc. Natl. Acad. Sci. (USA), in press.Google Scholar
  34. 34.
    G. Scala, P. Allavvena, J. Y. Djeu, T. Kasahara, J. R. Ortaldo, R. B. Herberman, and J. S. Oppenheim. Human large granular lymphocytes are potent producers of interleukin 1. Nature (London) 309:56, (1984).ADSCrossRefGoogle Scholar
  35. 35.
    R. H. Goldfarb, T. Timonen, and R. B. Herberman. Production of plasminogen activator by human natural killer cells: large granular lymphocytes. J. Exp. Med. 159:935, (1984).CrossRefGoogle Scholar
  36. 36.
    G. Degliantoni, M. Murphy, M. Kobayashi, M. K. Francis, B. Perussia, and G. Trinchieri. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. J. Exp. Med. 1662:1512, (1985).CrossRefGoogle Scholar
  37. 37.
    B. Pohajdak, J. L. Gomer, J. A. Wilkins, and A. H. Greenberg. Tumor-activated NK cells trigger monocyte oxidative metabolism. J. Immunol. 133:2430, (1984).Google Scholar
  38. 38.
    Z. Grossman, and R. B. Herberman. Hypothesis on the development of natural killer cells and their relationship to T cells. In NK Cells and Other Natural Effector Cells, R. B. Herberman ed. Academic Press, New York, (1982) pp 229.CrossRefGoogle Scholar
  39. 39.
    J. Hackett Jr, G. C. Bosma, M. J. Bosma, M. Bennett, and V. Kumar. Transplantable progenitors of natural killer cells are distinct from those of T and B lymphocytes. Proc. Natl. Acad. Sci. (USA), in press.Google Scholar
  40. 40.
    T. Abo, and C. M. Balch. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J. Immunol. 127:1024, (1981).Google Scholar
  41. 41.
    T. Abo, M. D. Cooper, and C. M. Balch. Characterization of HNK-1(+) (Leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability. J. Immunol. 129:1752, (1982).Google Scholar
  42. 42.
    J. D. Griffin, T. Hercend, R. Beveridge, and S. F. Schlossman. Characterization of an antigen expressed on human natural killer cells. J. Immunol. 1330:2947, (1983).Google Scholar
  43. 43.
    G. Trinchieri, T. O’Brien, M. Shade, and B. Perussia. Phorbol esters enhance spontaneous cytotoxicity of human lymphocytes, abrogate Fc receptor expression, and inhibit antibody-dependent lymphocyte-mediated cytotoxicity. J. Immunol. 133:1869, (1984).Google Scholar
  44. 44.
    B. Freundlich, G. Trinchieri, B. Perussia, and R. B. Zurier. The cytotoxic effector cells in preparation of adherent mononuclear cells from human peripheral blood. J. Immunol. 132:1255, (1984)Google Scholar
  45. 45.
    B. Perussia, O. Acuto, C. Terhorst, J. Faust, R. Lazarus, V. Fanning, and G. Trinchieri. Human natural killer cells analyzed by BH73.1, a monoclonal antibody blocking FcR functions. II. Studies of B73.1 antibody-antigen interaction on the lymphocyte membrane. J. Immunol. 130:2142, (1982).Google Scholar
  46. 46.
    L. L. Lanier, T. J. Kipps and J. H. Phillips. Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leu 11 antigen). J. Exp. Med. 162:2089, (1985).CrossRefGoogle Scholar
  47. 47.
    C. W. Reynolds, and K. A. Foon. Ty-lymphoproliferative disorders in man and experimental animals: a review of the clinical, cellular and functional characteristics. Blood 64:1146, (1984).Google Scholar
  48. 48.
    A. Rambaldi, P. G. Pelicci, P. Allavena, D. M. Knowles, S. Rossini, R. Bassan, T. Barbui, R. Dalla-Favera, and A. Mantovani. T cell receptor β chain gene rearrangements in lymphoproliferative disorders of large granular lymphocytes/natural killer cells. J. Exp. Med. 162:2156, (1985).CrossRefGoogle Scholar
  49. 49.
    R. Foa, P. G. Pelicci, N. Migone, F. Lauria, G. Pizzolo, F. Flug, D. M. Knowles, and R. Dalla-Favera. Analysis of T-cell receptor beta chain (Tβ) gene rearrangements demonstrates the monoclonal nature of T-cell chronic lymphoproliferative disorders. Blood 67:247. (1986).Google Scholar
  50. 50.
    J. M. Lipton, L. M. Nadler, G P. Canellos, M. Kudish, C. S. Reiss, and D. G. Nathan. Evidence for genetic restriction in the suppression of erythropoiesis by a unique subset of T lymphocytes in man. J. Clin. Invest. 72:694, (1983).CrossRefGoogle Scholar
  51. 51.
    R. B. Herberman, M. E. Nunn, H. T. Holden, S. Staal, and J. Y. Djue. Augmentation of natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic target cells. Int. J. Cancer 19:555, (1977).CrossRefGoogle Scholar
  52. 52.
    D. Santoli, G. Trinchieri, and F. S. Lief. Cell-mediated cytotoxicity against virus-infected cells in humans. I. Characterization of the effector lymphocyte. J. Immunol. 121:526, (1978).Google Scholar
  53. 53.
    H. H. Peter, R. F. Eife, and J. R. Kalden. Spontaneous cytotoxicity (SCMC) of normal human lymphocytes against a human melanoma cell line: a phenomenon due to a lymphptoxin-like mediator. J. Immunol. 116:342, (1976).Google Scholar
  54. 54.
    G. Trinchieri, D. Santoli, R. Dee, and B. B. Knowles. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation. J. Exp. Med. 147:1299, (1978).CrossRefGoogle Scholar
  55. 55.
    G. Trinchieri, and D. Santoli. Antiviral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J. Exp. Med. 147:1314, (1978).CrossRefGoogle Scholar
  56. 56.
    G. Trinchieri, and B. Perussia. Immune interferon: a pleiotropic lymphokine with multiple effects. Immunol. Today 6:131, (1985).CrossRefGoogle Scholar
  57. 57.
    S. Targan, and F. Dorey. Interferon activation of “pre-spontaneous killer” (pre-SK) cells and alteration in kinetics of lysis of both “pre-SK” and active SK cells. J. Immunol. 124:2157, (1980).Google Scholar
  58. 58.
    B. Perussia, and G. Trinchieri. Inactivation of natural killer cell cytotoxic activity after interaction with target cells. J. Immunol. 126:754, (1981).Google Scholar
  59. 59.
    T. Timonen, J. R. Ortaldo, and R. B. Herberman. Analysis by a single cell cytotoxicity assay of natural killer (NK) cell frequencies among human large granular lymphocytes and of the effects of IFN on their activity. J. Immunol. 128:2514, (1982).Google Scholar
  60. 60.
    S. C. Wright, and B. Bonavida. Studies on the mechanism of natural cytotoxicity. III. Activation of NK cells by interferon augments the lytic activity of released natural killer cytotoxic factors (NKCF). J. Immunol. 130:2960, (1983).Google Scholar
  61. 61.
    J. Y. Djeu, N. Stocks, K. Zoon, G. J. Stanton, T. Timonen, and R. B. Herberman. Positive self regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes virus. J. Exp. Med. 156:1222, (1982).CrossRefGoogle Scholar
  62. 62.
    B. Perussia, V. Fanning, and G. Trinchieri. A leukocyte subset bearing HLA-DR antigens in responsible for in vitro alpha interferon production in response to viruses. Nat. Immun. Cell Growth Regul. 4:120, (1985).Google Scholar
  63. 63.
    D. Santoli, G. Trinchieri, and H. Koprowski. Cell-mediated cytotoxicity against virus-infected target cells in humans. II. Interferon induction and activation of natural killer cells. J. Immunol. 121:532, (1978).Google Scholar
  64. 64.
    C. Opez, R. N. Pahawa, R. A. Good, and E. M. Smithwick. Studies of the cell lineage of the effector cells that spontaneously lyse HSV-1 infected fibroblasts (NHK (HSV-1)). J. Immunol. 129:824. (1982).Google Scholar
  65. 65.
    G. Trinchieri, D. Granato, and B. Perussia. Interferon-induced resistance of fibroblasts to cytolysis mediated by natural killer cells: specificity and mechanism. J. Immunol. 126:335. (1981).Google Scholar
  66. 66.
    S. C. Wright, and B. Bonavida. Studies on the mechanism of natural killer cell-mediated cytotoxicity. IV. Interferon-induced inhibition of NK target cell susceptibility to lysis is due to a defect in their ability to stimulate release of natural killer cytotoxic factors (NKCF). J. Immunol. 130:2965, (1983).Google Scholar
  67. 67.
    G. Yogeeswaran, R. Fujinami, R. Kiessling, and R. M. Welsh. Interferon-induced alteration in cellular sialic acid and glycoconjugates. Correlation with susceptibility to activated natural killer cells. Virology 121:363, (1982).CrossRefGoogle Scholar
  68. 68.
    E. A. Grimm, K. M. Ramsey, A. Maxzumder, D. J. Wilson, J. Y. Djeu, and S. A. Rosemberg. Lymphokine activated killer cell phenomen. II. Precursor phenotype is serologically distinct from peripheral T lymphocytes, memory cytotoxic thymus-derived lymphocytes and natural killer cells. J. Exp. Med. 157:884, (1983).CrossRefGoogle Scholar
  69. 69.
    J. A. O’Malley, A. Nussbaum-Blumenson, D. Sheedy, B. F. Grossmayer, and H. Ozer. Identification of the T cell subset that produced human γ interferon. J. Immunol. 128:2522, (1982).Google Scholar
  70. 70.
    L. T. Bich-Tjuy, and A. S. Fauci. Direct effect of interleukin 2 on the differentiation of human B cells which have not been preactivated in vitro. Eur. J. Immunol. 15:1075, (1985).CrossRefGoogle Scholar
  71. 71.
    Y. Yanagi, N. Caccia, M. Kronenberg, B. Chin, J. Roder, D. Rohel, T. Kiyohara, R. Lauzon, B. Toyonaga, K. Rosenthal, G. Dennert, H. Acha-Orbea, H. Hengartner, L. Hood, and T. W. Mac. Gene rearrangement in cells with natural killer activity and expression of the β chain of the T-cell antigen receptor. Nature (London) 314:631, (1985).ADSCrossRefGoogle Scholar
  72. 72.
    C. A. Biron, and R. M. Welsh. Blastogenesis of natural killer cells during viral infection in vivo. J. Immunol. 129:2788, (1982).Google Scholar
  73. 73.
    B. M. Vose, C. Riccardi, G. B. Bonnard, and R. B. Herberman. Limiting dilution analysis of the frequency of human T cells and large granular lymphocytes proliferating in response to interleukin 2. II. Regulatory role of interferon on proliferative and cytotoxic precursors. J. Immunol. 130:768, (1983).Google Scholar
  74. 74.
    N. Minato, T. Amagai, J. Yodoi, T. Diamanstein, and S. Karo. Regulation of the growth and functions of cloned murine large granular lymphocyte lines by resident macrophages. J. Exp. Med. 162:1161, (1985).CrossRefGoogle Scholar
  75. 75.
    J. H. Phillips, and L. L. Lanier. A model for the differentiation of human natural killer cells. Studies on the in vitro activation of Leu11+ granular lymphocytes with a natural killer-sensitive tumor cells, K562. J. Exp. Med. 161:1464, (1985).CrossRefGoogle Scholar
  76. 76.
    L. London, B. Perussia, and G. Trinchieri. Induction of proliferation invitro of resting human natural killer cells: expression of surface activation antigens. J. Immunol. 134:718, (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Giorgio Trinchieri
    • 1
  • Lucille London
    • 1
  • Michiko Kobayashi
    • 1
  • Bice Perussia
    • 1
  1. 1.The Wistar Institute for Anatomy and BiologyPhiladelphiaUSA

Personalised recommendations