Expression of the C-Fos Gene During Differentiation

  • Charles Van Beveren
  • Richard L. Mitchell
  • Cynthia Henning-Chubb
  • Eliezer Huberman
  • Inder M. Verma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)


Retroviruses cause tumors in experimental animals via a number of diverse mechanisms. One group of viruses induces transformation by introduction of a viral gene (v-onc) derived from a normal cellular gene (c-onc) (1–3). In general, acquisition of the c-onc gene is accompanied by various alterations, including single base changes and deletions, and fusions with other cellular or viral genes (4). The oncogenes which have been isolated from viruses number about twenty, of which the majority are, or are related to, genes encoding bonafide protein tyrosine kinases (2,4,5). the function of another group of genes, including fos, myb, myc and ski, is not determined, but their localization in the nucleus suggests that they may play a role in control of gene expression.


Human Histiocytic Lymphoma Cell Line Follow Serum Stimulation Normal Cellular Gene Murine Osteosarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170, (1976).ADSCrossRefGoogle Scholar
  2. 2.
    J. M. Bishop, and H. Varmus. Supplement: Functions and origins of retroviral transforming genes. In RNA Tumor Viruses, 2nd ed, R. Weiss, N. Teich, H. Varmus, J. Coffin, eds, vol 2, Cold Spring Harbor Lab., Cold Spring Harbor, NY (1985) pp 249.Google Scholar
  3. 3.
    N. Teichy, J. Wyke, and P. Kaplan. Supplement: Pathogenesis of retrovirus-induced disease. In RNA Tumor Viruses, 2nd ed, R. Weiss, N. Teich,. H. Varmus, J. Coffin, eds, vol 2, Cold Spring Harbor Lab., Cold Spring Harbor, NY (1985) pp 187.Google Scholar
  4. 4.
    C. Van Beveren, and I. M. Verma. Homology among oncogenes. Curr. Topics Microbiol. Immunol. 123:73, (1985).CrossRefGoogle Scholar
  5. 5.
    T. Hunter, and J. A. Cooper. Viral oncogenes and tyrosine phosphorylation. In The Enzymes: Enzyme Control by Phosphorylation, P. D. Boyer, E. G. Krebs, eds, Academic Press, New York, (1986), in press.Google Scholar
  6. 6.
    M. P. Finke. B. O. Biskis, and P. B. Jinkins. Virus induction of osteosarcomas in mice. Science 151:698, (1986).ADSCrossRefGoogle Scholar
  7. 7.
    T. Curran, G. Peters, C. Van Beveren, N. M. Teich, and I. M. Verma. FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J. Virol. 44L:674, (1982).Google Scholar
  8. 8.
    C. Van Beveren, F. van Straaten, T. Curran, R. Müller, and I. M. Verma. Analysis of FBJ-MuSV provirus and c-fos (mouse) gene reveal that viral and cellular fos gene products have different carboxy termini. Cell 32:1241, (1983).CrossRefGoogle Scholar
  9. 9.
    F. Van Straaten, R. Muller, T. Curran, C. Van Beveren, and I. M. Verma. Complete nucleotide sequence of a human c-onc gene: deduced amino acid sequence of the human c-fos protein. Proc. Natl. Acad. Sci. 80:P3183, (1983).ADSCrossRefGoogle Scholar
  10. 10.
    A. D. Miller, T. Curran, and I. M. Verma. C-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36:51, (1984).CrossRefGoogle Scholar
  11. 11.
    F. Meijlink, T. Curran, A. D. Miller, and I. M. Verma. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. Proc. Natl. Acad. Sci. 82:4987, (1985).ADSCrossRefGoogle Scholar
  12. 12.
    C. Van Beveren, S. Enami, T. Curran, and I. M. Verma. FBR murine osteosarcoma vvirus. II. Nucleotide sequence of the provirus reveals that the genome contains sequences derived from two cellular genes. Virology 135:229, (1984).CrossRefGoogle Scholar
  13. 13.
    A. D. Miller, I. M. Verma, and T. Curran. Deletion of the gag region from FBR murine osteosarcoma virus does not affect its enhanced transforming activity. J. Virol. 55:521. (1985).Google Scholar
  14. 14.
    B. H. Cochran, J. Zullo, I. M. Verma, and C. D. Stiles. Expression of the c-fos gene and of an fos-related gene is stimulated by platelet-derived growth factor. Science 226:1080. (1984).ADSCrossRefGoogle Scholar
  15. 15.
    M. E. Greenburg, and E. B. Ziff. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311:433, (1984).ADSCrossRefGoogle Scholar
  16. 16.
    W. Kruijer, J. A. Cooper, T. Hunter, and I. M. Verma. Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312:711, (1984).ADSCrossRefGoogle Scholar
  17. 17.
    R. Muller, R. Bravo, J. Burckhardt, and T. Curran. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312:716, (1984).ADSCrossRefGoogle Scholar
  18. 18.
    R. Bravo, J. Burchardt, T. Curran, and R. Muller. Stimulation and inhibition of growth by EGF in different A431 cell clones is accompanied by the rapid induction of c-fos and c-myc proto-oncogenes. EMBO J. 4:1193, (1985).Google Scholar
  19. 19.
    T. Curran, and J. I. Morgan, Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science 229:1265, (1985).ADSCrossRefGoogle Scholar
  20. 20.
    W. Kruijer, D. Schubert, and I. M. Verma. Induction of the proto-oncogene fos by nerve growth factor. Proc. Natl. Acad. Sci. 82:7330, (1985).ADSCrossRefGoogle Scholar
  21. 21.
    R. Treisman. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5’ element and c-fos 3′ sequences. Cell 42:889, (1985).CrossRefGoogle Scholar
  22. 22.
    J. N. Zullo, B. H. Cochran, A. S. Huang, and C. D. Stiles. Platelet-derived growth factor and double-stranded ribonucleic acids stimulate expression of the same genes in 3T3 cells. Cell 43:793, (1985).CrossRefGoogle Scholar
  23. 23.
    T. J. Gonda, and D. Metcalf. Expression of myb. myc, and fos proto-oncogenes during differentiation of a murine myeloid leukemia. Nature 310:249, (1984).ADSCrossRefGoogle Scholar
  24. 24.
    R. Muller, D. Muller, and L. Guilbert. Differential expression of c-fos in hematopoietic cells: correlation with differentiation of monomyelocytic cells in vitro. EMBO J. 3:1867. (1984).Google Scholar
  25. 25.
    R. L. Mitchell, L. Zokas, R. D. Schreiber, and I. M. Verma. Rapid induction of the expression of proto-oncogene fos during human monocytic differentiation. Cell 40:209, (1985).CrossRefGoogle Scholar
  26. 26.
    R. Muller, T. Curran, D. Muller, and L. Guilbert. Induction of c-fos during myelomonocytic differentiation and macrophage proliferation. Nature 314:546, (1985).ADSCrossRefGoogle Scholar
  27. 27.
    E. Sariban, T. Mitchel, and D. Kufe. Expression of the c-fms proto-oncogene during human monocytic differentiation. Nature 316:64, (1985).ADSCrossRefGoogle Scholar
  28. 28.
    C. Sundstrom, and K. Nilsson. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int. J. Cancer 17:565, (1976).CrossRefGoogle Scholar
  29. 29.
    S. J. Collins, R. C. Gallo, and R. E. Gallagher. Continuous growth and differentiation of human myeloid leukemic cells in suspension culture. Nature 270:347, (1977).ADSCrossRefGoogle Scholar
  30. 30.
    R. L. Mitchell, C. Henning-Chubb, E. Huberman, and I. M. Verma. c-fos expression is neither sufficient nor obligatory for differentiation of monomyelocytes to macrophages. Cell 45, in press (1986).Google Scholar
  31. 31.
    J. M. Chirgwin, A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. Isolation of biologically active ribonucleic acid from sources enriched inn ribonuclease. Biochemistry 18:5294, (1979).CrossRefGoogle Scholar
  32. 32.
    H. Lehrachy, D. Diamond, J. M. Wozney, and HJ. Boedtker. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical re-examination. Biochemistry 16:4743, (1977).CrossRefGoogle Scholar
  33. 33.
    P. S. Thomas. Hybridization of denatured RNA and small DNA fragments transferred to nitocellulose. Proc. Natl. Acad. Sci. 77:5201, (1980).ADSCrossRefGoogle Scholar
  34. 34.
    B. Perbal, and M. A. Baluda. Avian myeloblastosis virus transforming gene is related to unique chicken DNA regions separated by at least one intervening sequence. J. Virol. 41:250, (1982).Google Scholar
  35. 35.
    P. W. J. Rigby, M. Dieckmann, C. Rhodes, and P. Berg. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237, (1977).CrossRefGoogle Scholar
  36. 36.
    J. Meinkoth, and G. Wahl. Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 138:267. (1984).CrossRefGoogle Scholar
  37. 37.
    M. Groudine, M. Peretz, and H. Weintraub. Transcriptional regulation of hemoglobin switching in chicken embryos. Mol. Cell Biol. 1:281, (1981).Google Scholar
  38. 38.
    B. Venstrom, C. Moscovici, H. M. Goodman, and J. M. Bishop. Molecular cloning of the avian myelocytomattosis virus genome and recovery of infectious virus by transfection of chicken cells. J. Virol. 39:625, (1981).Google Scholar
  39. 39.
    K. Kelly, B. H. Cochran, C. D. Stiles, and P. Leder. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603, (1983).CrossRefGoogle Scholar
  40. 40.
    R. W. Craig, and A. Bloch. Early decline in c-myb oncogene expression in the differentiation of human myeloblastic leukemia (ML-1) cells induced with 12–0-tetradecanhoylphorbol-13-acetate. Cancer Res. 44:442. (1984).Google Scholar
  41. 41.
    K. A. Foon, R. W. Schroff, and R. P. Gale. Surface markers on leukemia and lymphoma cells: recent advances. Blood 60:1, (1982).Google Scholar
  42. 42.
    S-I. Murao, A. L. Epstein, C. V. Clevenger, and E. Huberman. Expression of maturation-specific nuclear antigens in differentiating human myeloid leukemia cells. Cancer Res. 45:791, (1985).Google Scholar
  43. 43.
    C. Y. Li, K. W. Lam, and L. T. Yam. Esterases in human leukocytes. J. Histochem. Cytochem. 21:1. (1973).ADSCrossRefGoogle Scholar
  44. 44.
    R. Muller, and I. M. Verma. Expression of cellular oncogenes. Curr. Topics Microbiol. Immunol. 112:73, (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Charles Van Beveren
    • 1
  • Richard L. Mitchell
    • 1
  • Cynthia Henning-Chubb
    • 2
  • Eliezer Huberman
    • 2
  • Inder M. Verma
    • 1
  1. 1.Molecular Biology and Virology LaboratorySalk Institute for Biological StudiesSan DiegoUSA
  2. 2.Division of Biological and Medical ResearchArgonne National LaboratoryArgonneUSA

Personalised recommendations