Advertisement

B Lymphocyte Activation the Roles of Receptor Cross-Linkage and BSF-1

  • William E. Paul
  • Junichiro Mizuguchi
  • Michael A. Beaven
  • Peter Hornbeck
  • Wayne Tsang
  • Junichi Ohara
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)

Abstract

Although responses to antigens introduced into an individual for the first time depend upon the small fraction of B lymphocytes which bear receptors capable of binding to epitopes on that antigen. Since antibody must be produced promptly and in sufficient amounts to deal with an infectious agent or a newly emerging malignant cell, B cell proliferation and differentiation are key to the efficient function of the immune system. Immunologists have adopted a working model for control of B lymphocyte growth and antibody responses which is predicated on the recognition that antigens may be divided into two broad classes, those with repetitive epitopes and those which bear but a single representation of any individually epitope. The importance of this distinction follows from the observation that receptor-mediated signalling requires cross-linking of membrane receptors. Since individual B lymphocytes possess receptors all of which have a common binding specificity, those antigens which bear repetitive epitopes will be capable of cross-linking receptors while those which bear but a single copy of an epitope will not. Current work indicates that responses to antigens of the latter type depends on T cell-B cell interactions in which the T cell recognizes antigenic peptides and class II major histocompatibility complex (MHC) molecules on the surface of the B cell. This type of interaction is usually referred to as cognate T cell-B cell interaction. Antibody responses to antigens with repetitive epitopes could, in principle, also use this mechanism. However, a second pathway of B cell responses may be utilized for such antigens, which is designated receptor cross-linkage-dependent B cell activation.

Keywords

Major Histocompatibility Complex Major Histocompatibility Complex Molecule Phorbol Myristate Acetate Phosphatidyl Inositol Inositol Trisphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Parker. Stimulation of mouse lymphocytes by insoluble anti-mouse immunoglobulins. Nature 258:361 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    D. G. Sieckmann, R. Asofsky, D. E. Mosier, I. M. Zitron, and W.E. Paul. Activation of mouse lymophcytes by anti- immunoglobulin. I. Parameters of the proliferative response. J. Exp. Med. 147:814 (1978).CrossRefGoogle Scholar
  3. 3.
    K. M. Coggeshall, and J. C. Cambier. B cell activation. VI. Effects of exogenous diglyceride and modulators of phospholipid metabolism suggest a central role for diacylglycerol generation in transmembrane signaling by mIg. J. Immunol. 134:101 (1985).Google Scholar
  4. 4.
    M. K. Bijsterbosch, C. J. Meade, G. A. Turner, and G. G. B. Klaus. B lymphocyte receptors and polyphosphoinositide degradation. Cell 41:999 (1985).CrossRefGoogle Scholar
  5. 5.
    S. A. Grupp, and J. A. K. Harmony. Increased phosphatidylinositol metabolism is an important but not an obligatory early event in B lymphocyte activation. J. Immunol. 134:4087 (1985).Google Scholar
  6. 6.
    M. J. Berridge. Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220:345 (1984).Google Scholar
  7. 7.
    T. Pozzan, P. Arslan, R. Y. Tsien, and T. J. Rink. Anti- immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J. Cell Biol. 94:335 (1982).CrossRefGoogle Scholar
  8. 8.
    R. Y. Tsien, T. Pozzan, and T. J. Rink. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94:325 (1982).CrossRefGoogle Scholar
  9. 9.
    H. A. Wilson, D. Greenblatt, C.W. Taylor, J. W. Putney, R. Tsien, F. D. Finkelman, and T. M. Chused. B lymphocyte calcium signals induced by anti-Ig are abrogated mIg-Fc R cross-linkage. Submitted for publication (1986).Google Scholar
  10. 10.
    Y. Takai, A. Kishimoto, Y. Iwasa, Y. Kawahara, T. Mori, and Y. Nishizuka. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 254:3692 (1978).Google Scholar
  11. 11.
    R. Ballester, and O. M. Rosen. Fate of immunoprecipitable protein kinase C in GH3 cells treated with phorbol 12-myristate 13-acetate. J. Biol. Chem. 260:15194 (1985).Google Scholar
  12. 12.
    A. L. DeFranco, E. S. Raveche, R. Asofsky, and W. E. Paul. Frequency of B lymphocytes responsive to anti-immunoglobulin. J. Exp. Med. 155:2073 (1983).Google Scholar
  13. 13.
    J. G. Monroe, and J. C. Cambier. B cell activation. I. Anti-immunoglobulin-induced receptor cross-linking results in a decrease in plasma membrane potential of murine B cells. J. Exp. Med. 157:2073 (1983).CrossRefGoogle Scholar
  14. 14.
    M. Howard, J. Farrar, M. Hilfiker, B. Johnson, K. Takatsu, T. Hamaoka, and W. E. Paul. Identification of a T cell-derived B cell growth factor distinct from interleukin 2. J. Exp. Med. 155:914, (1982).CrossRefGoogle Scholar
  15. 15.
    W. E. Paul. Nomenclature of lymphokines which regulate B lymphocytes. Mol. Immunol. 21:343 (1984).CrossRefGoogle Scholar
  16. 16.
    M. Howard, L. Matis, T. Malek, E. Shevach, W. Kell, D. Cohen, K. Nakanishi, B. Johnson, and W. E. Paul. Interleukin 2 induces antigen-reactive T cells to secrete BCGF-1. J. Exp. Med. 158:2024 (1983).CrossRefGoogle Scholar
  17. 17.
    T. R. Mossman, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R.L. Coffman. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348 (1986).Google Scholar
  18. 18.
    J. Ohara, S. Lahet, J. Inman, and W. E. Paul. Partial purification of murine B cell stimulatory factor (BSF)-1. J. Immunol. 135:2518 (1985).Google Scholar
  19. 19.
    J. Ohara, and W. E. Paul. Production of a monoclonal antibody to and characterization of B cell stimulatory factor-1. Nature 315:333 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Noma, P. Sideras, T. Naito, S. Bergstedt-Lindquist, C. Azuma, E. Severinson, T. Tanabe, T. Kinashi, F. Matsuda, Y. Yaoita, and T. Honjo. Cloning of cDNA encoding the murine IgG1 induction factor by a novel strategy using SP6 promoter. Nature 319:640 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    F. Lee, T. Yokota, T. Otsuka, P. Meyerson, D. Villaret, R. Coffman, T. Mosmann, D. Rennick, N. Roehm, C. Smith, A Zlotnik, and K.Arai. Isolation and characterizations of a mouse interleukin cDNA that expresses BSF-1 activities and T cell and mast cell stimulating activities. Proc. Natl. Acad. Sci. USA in press.Google Scholar
  22. 22.
    E. M. Rabin, J. Ohara, and W. E. Paul. B cell stimulatory factor 1 activates resting B cells. Proc. Natl. Acad. Sci. USA 82:2935 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    K. Oliver, R. J. Noëlle, J. W. Uhr, P. H. Krammer, and E. S. Vitetta. B cell growth factor (B cell growth factor I or B cell-stimulating factor, provisional 1) is a differentiation factor for resting B cells and may not induce cell growth. Proc. Natl. Acad. Sci. USA 82:2465 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    R. Noelle, P. H. Krammer, J. Ohara, J. W. Uhr, and E. S. Vitetta. Increased expression of Ia antigens on resting B cells: a new role for B cell growth factor. Proc. Natl. Acad. Sci. USA 81:6149 (1984).ADSCrossRefGoogle Scholar
  25. 25.
    N. W. Roehm, H. J. Liebon, A. Zlotnik, J. Kappler, P. Marrack, and J. C. Cambier. Interleukin-induced increase in Ia expression by normal mouse B cells. J. Exp. Med. 160:679 (1984).CrossRefGoogle Scholar
  26. 26.
    S. K. Swain, and R. W. Dutton. Production of a B cell growth- promoting activity, (DL)BDGF, from a cloned T cell line and its assay on the BCL1 B cell tumor. J. Exp. Med. 156:1821 (1982).CrossRefGoogle Scholar
  27. 27.
    K. Takatsu, K. Tanaka, A. Tomminaga, Y. Kumahara, and T. Hamaoka. Antigen-induced T cell-replacing actor (TRF). III. Establishment of T cell hybrid clone continuously producing TRF and functional analysis of released TRF. J. Immunol. 125:2646 (1980).Google Scholar
  28. 28.
    K. Nakajima, T. Hirano, F. Takatsuki, N. Sakaguchi, N. Yoshida, and T. Kishimoto. Physicochemical and functional properties of murine B cell-derived B cell growth factor II (WEHI-231-BCGF-II). J. Immunol. 135:1207 (1985).Google Scholar
  29. 29.
    J. L. Ambrus, and A. S. Fauci. Human B lymphoma cell line producing B cell growth factor. J. Clin. Invest. 75:732 (1985).CrossRefGoogle Scholar
  30. 30.
    J. Gordon, S. C. Ley, M. D. Melamed, L. S. English, and N. C. Hughes-Jones. Immortalized B lymphocytes produce a B-cell growth factor. Nature 310:145 (1984).ADSCrossRefGoogle Scholar
  31. 31.
    L. A. Matis, L. H. Glimcher, W. E. Paul, and R. H. Schwartz. The magnitude of response of histocompatibility-restricted T cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc. Natl. Acad. Sci. USA 80:6019 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    B. P. Babbitt, P. M. Allen, G. Matsueda, E. Haber, and E. Unanue. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317:359 (1985).ADSCrossRefGoogle Scholar
  33. 33.
    J. J. Monnd, F. D. Finkelman, C. Sarma, J. Ohara, and S. Serrate. Recombinant interferon- inhibits the B cell proliferative response stimulated by soluble but not Sepharose-bound anti- immunoglobulin antibody. J. Immunol. 135:2513 (1985).Google Scholar
  34. 34.
    E. M. Rubin, J. J. Mond, J. Ohara, and W. E. Paul. Interferon- inhibitors the action of B cell stimulatory factor (BSF)-1 on resting B cells. Submitted for publication (1986).Google Scholar
  35. 35.
    J. J. Mond, J. Carmon, C. Sarma, J. Ohara, and F. D. Finkelman. Interferon-γ suppresses B cell stimulation factor-1 (BSF-1) induction of class II MHC determinants on B cells. Submitted for publications (1986).Google Scholar
  36. 36.
    E. S. Vitetta, J. Ohara, C. D. Myers, J. E. Layton, P. H. Krammer, and W. E. Paul. Serological, biochemical and functional identity of B cell stimulatory factor 1 and B cell differentiation factor for IgGl. J. Exp. Med. 162:1726 (1985).CrossRefGoogle Scholar
  37. 37.
    R. L. Coffman, J. Ohara, M. W. Bond, J. Carty, A. Zlotnik, and W. E. Paul. B cell stimulatory factor-1 enhances the IgE response of LPS-activated B cells. J. Immunol. in press (1986).Google Scholar
  38. 38.
    J. E. Layton, E. S. Vitetta, J. W. Uhr, and P. H. Krammer. Clonal analysis of B cells induced to secrete IgG by T cell-derived lymphokine(s). J. Exp. Med. 160:1850 (1984).CrossRefGoogle Scholar
  39. 39.
    T. R. Mosmann, M. W. Bond, R. L. Coffman, J. Ohara, and W. E. Paul. T cell and mast cell lines respond to B cell stimulatory factor-1. Proc. Natl. Acad. Sci. USA in press, (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • William E. Paul
    • 1
  • Junichiro Mizuguchi
    • 1
  • Michael A. Beaven
    • 1
  • Peter Hornbeck
    • 1
  • Wayne Tsang
    • 1
  • Junichi Ohara
    • 1
  1. 1.Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, and Laboratory of Chemical Pharmacology, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations