Coupling of B Cell Surface Ig, Ia and BSF1 Receptors to Intracellular “Second Messengers”

  • J. C. Cambier
  • J. T. Ransom
  • L. K. Harris
  • K. M. Coggeshall
  • Z. Z. Chen
  • M. K. Newell
  • L. B. Justement
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)


Accumulating evidence indicates that quiescent, murine B lymphocytes have the capacity to respond to multiple physiologic regulatory species. Virtually all small B cells express receptor immunoglobulin of two classes, IgM and IgD which confer responsiveness to antigen. They respond to thymus dependent antigens, and anti-immunoglobulin antibodies which act as antigen surrogates, as determined by an increase in the expression of cell surface Ia (1,2). Under appropriate conditions anti-immunoglobulin antibodies also induce B cell blastogenesis and proliferation (3,4). These mitogenic antibodies mimic the effects of highly polymeric thymus independent antigens generally termed TI type 1 antigens. It appears that the minimal signal generated by mlg crosslinking by TD antigen or anti-Ig antibodies is sufficient for induction of Ia expression. However, the basis by which TIl antigens and certain surrogate antibodies induce proliferation remains unclear. Recent evidence indicates that quiescent B cells also respond to the T cell lymphokine BSF1 resulting in increased expression of surface Ia (5–7). BSF1 also has a general viability promoting effect on quiescent B cells, while nonmitogenic anti-Ig antibodies adversely effect cell viability (J. Cambier, unpublished observations). Studies by Mond et al (8) and ourselves (unpublished observations) indicate that small B cells are responsive to interferony as well as αa and γ endorphins. Cloned IFNγ and endorphins inhibit anti-Ig induction of Ia expression and proliferation.


Transmembrane Signaling Induce Membrane Depolarization Membrane Immunoglobulin Thymus Dependent Antigen Cell Permeant cAMP Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Monroe, and J. C. Cambier. B cell activation. III. B cell plasma membrane depolarization and hyper I-A antigen expression induced by receptor immunoglobulin crosslinking are coupled. J. Exp. Med. 158:1589 (1983).CrossRefGoogle Scholar
  2. 2.
    J. J. Mond, E. Segal, J. Kung and F. D. Finkelman. Increased expression of I-region-associated antigen (la) on B cells after crosslinking of surface immunoglobulin. J. Immunol. 127:881 (1981).Google Scholar
  3. 3.
    F. D. Finkelman, K. J. Mond, and E. S. Metcalf. Anti-Immunoglobulin induction of B lymphocyte activation and differentiation In Vivo and In Vitro. In B lymphocyte Differentiation, J. C. Cambier ed. CRC Press, Boca Raton, (1986) pp. 41.Google Scholar
  4. 4.
    M. Leptin. Monoclonal antibodies specific for murine IgM II. Activation of B lymphocytes by monoclonal antibodies specific for the four constant domains of IgM. Eur. J. Immuno. 15:131 (1985).CrossRefGoogle Scholar
  5. 5.
    R. Noëlle, P. HYJ. Krammer, K. T. Ohara, J. W. Uhr, and E. S. Vitetta. Increased expression of Ia antigens on resting B cells: an additional role for B cell growth factor. Proc. Natl. Acad. Sci. 81:6149 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    N. W. Roehm, J. L. Leibson, A. Zlotnik, J. Kappler, R. P. Marrack, and J. C. Cambier. Interleukin-induced increase in Ia expression by normal mouse B cells. J. Exp. Med. 160:679 (1984).CrossRefGoogle Scholar
  7. 7.
    K. Oliver, R. Noëlle, J. W. Uhr, P. H. Krammer, and E. S. Vitteta. B-cell growth factor (B-cell growth factor I or B-cell-stimulating factor, provisional 1) is a differentiation factor for resting B cells and may not induce cell growth. Proc. Natl. Acad. Sci. USA 82:2465 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    J. J. Mond, F. D. Finkleman, S. Sarma, J. Ohara, and S. Serrate. Recombinant interferon- inhibits the B cell proliferative response stimulated by soluble but not by sepharose-bound anti-immunoglobulinn antibody. J. Immunol. 135:2513 (1985).Google Scholar
  9. 9.
    S. Forsgren, G. Pobor, A. Coutinho, and M. Pierres. The role of I-A/E molecules in B lymphocyte activation 1. Inhibition of lipopolysaccharide-induced responses by monoclonal antibodies. J. Immunol. 133:2104 (1984).Google Scholar
  10. 10.
    J. E. Niederhuber, J. A. Frelinger, E. Dugan, A. Coutinho, and D. C. Shreffler. Effects of anti-la serum on mitogenic responses. I. Inhibiton of the proliferative response to B cell mitogen, LPS, by specific anti-la sera. J. Immunol. 115:1672 (1975).Google Scholar
  11. 11.
    R. Palacios, O. Martinez-Maza, and K. Guy. Monoclonal antibodies against HLA-DR antigens replace T helper cells in activation of B lymphocytes. Proc. Natl. Acad. Sci. USA 80:3456 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    G. A. Bishop, and G. Haughton. Induced differentiation of a B cell clone: Role of surface immunoglobulin, class II antigen and IL2 receptors. Fed. Proc. 45:714, #3250 (1986).Google Scholar
  13. 13.
    M. K. Bijsterbosch, J. C. Meade, G. A. Turner, and G. G. B. Klaus. B lymphocyte receptors and polyphosphoinnositide degradation. Cell 41:999 (1985).CrossRefGoogle Scholar
  14. 14.
    A. E. Nel, M. W. Wooten, G. E. Landreth, P. J. Goldshmidt-Clermont, H. C. Stevenson, P. J. Miller, and R. M. Galbraith. Translocation of phosphyolipid/Ca++-dependent protein kinase in B lymphocytes activated by phorbol ester or cross-linking of membrane immunoglobulin. Biochem. J. 233:145 (1986).Google Scholar
  15. 15.
    K. M. Coggeshall, and J. C. Cambier. B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. J. Immunol. 133:3382 (1984).Google Scholar
  16. 16.
    K. M. Coggeshall, and J. C. Cambier. B cell activation. VI. Effects of exogenous diacylglyceride modulators of phospholipid metabolism suggest a central role for diacylgercerol generation in transmembrane signalling by mIg. J. Immunol. 134:101 (1985).Google Scholar
  17. 17.
    J. G. Monroe, J. E. Neidel, and J. C. Cambier. B cell activation. IV. Induction of cell membrane depolarization and hyper I-A expression by phorbol diesters suggests a role for protein kinase C in murine B lymphocyte activation. L Immunol. 132:1472 (1984).Google Scholar
  18. 18.
    J. T. Ransom, D. L. DiGiusto, and J. C. Cambier. Single cell analysis of calcium mobilization inn anti-receptor antibody stimulated B lymphocytes. J. Immunol. 136:54 (1985).Google Scholar
  19. 19.
    J. T. Ransom, L. K. Harris, and J. C. Cambier. Anti-Ig induces release of inositol 1,4,5 trisphosphate which mediates mobilization of intracellular Ca++ stores in B lymphocyte. J. Immunol. 137:700 (1986).Google Scholar
  20. 20.
    M. J. Berridge, and R. F. Irvine. Insitol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    K. M. Coggeshall, J. G. Monroe, J. T. Ransom, and J. C. Cambier. Mechanisms of Transmembrane Signal Transduction during B Cell Activation. In B lymphocyte Differentiation, JC Cambier ed. CRC Uniscience Series, Boca Raton, (1985) pp 1.Google Scholar
  22. 22.
    J. T. Ransom, D. L. Digiusto, and J. C. Cambier. Flow cytometric analysis of intracellular calcium mobilization. In Cellular Regulators: Calcium and Calmodulinn Binding Proteins, A Means, PM Conn Eds, Methods in Enzymology, Academic Press, New York, (1986) In Press.Google Scholar
  23. 23.
    W. L. Farrar, and W. B. Anderson. Interleukin-2 stimulates association of protein kinase C with plasma membrane. Nature 315:233 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    W. L. Farrar, P. T. Thomas, and W. B. Anderson. Altered cytosol-membrane enzyme redistribution on interleukin-3 activation of protein kinase C. Nature 315:235 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    Z. Z. Chen, K. M. Coggeshall, and J. C. Cambier. Translocation of protein kinnase C during membrane immunoglobulin — mediated transmembrane signaling in B lymphocytes. J. Immunol. 136:2300–2306 (1986).Google Scholar
  26. 26.
    J. T. Ransom, and J. C. Cambier. B cell activation. VIII. Independent and synergistic effects of mobilized calcium and diacylglycerol on membrane potential and I-A expression. J. Immunol. 136:66 (1985).Google Scholar
  27. 27.
    D. R. Sibley, and R. J. Lefkowitz. Molecular mechanisms of receptor desensitization using the -adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317:124 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    P. A. Liebman, and A. Sitaramayya. Role of G protein-receptor interaction in amplified phosphodiesterase activation of retinal rods. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:215 (1984).Google Scholar
  29. 29.
    T. Hunter, and J. A. Cooper. Protein-tyrosine kinases. Ann. Rev. Biochem. 54:897 (1985).CrossRefGoogle Scholar
  30. 30.
    J. Anderson, M. H. Schrier, and F. Melchers. T cell dependent B cell stimulation is H-2 restricted and antigen dependent only at the resting B cell level. Proc. Natl. Acad. Sci. USA 77:1612 (1980).ADSCrossRefGoogle Scholar
  31. 31.
    M. Julius, H. Von Boehmer, and C. L. Sidman. Dissociation of two signal required for activation of resting B cells. Proc. Natl. Acad Sci. USA 79:1989 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. C. Cambier
    • 1
  • J. T. Ransom
    • 1
  • L. K. Harris
    • 1
  • K. M. Coggeshall
    • 1
  • Z. Z. Chen
    • 1
  • M. K. Newell
    • 1
  • L. B. Justement
    • 1
  1. 1.Division of Basic Immunology, Department of MedicineNational Jewish Center for Immunology and Respiratory MedicineDenverUSA

Personalised recommendations