Transmembrane Signaling Reactions Generated in B Cells in Response to ANTI-IgM or Lipopolysaccharide

  • Anthony L. DeFranco
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)

Abstract

The development and activation of B lymphocytes appear to be highly regulated by antigen or other agents interacting with mIgM and mIgD, products of helper T cells and macrophages, complement fragments, and bacterial products such as lipopolysaccharide (LPS) (1,2). One approach toward understanding this rich complexity is to define how the B cell translates these extracellular signals into intracellular biochemical reactions that may contribute to the regulation of growth and development of the cell. The recent work on signal transduction from membrane IgM and from the putative receptor for LPS are described.

Keywords

Hydrolysis Lymphoma Choline Acetylcholine Inositol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kishimoto. Factors affecting B-cell growth and differentiation. Ann. Rev. Immunol. 3:133–157 (1985).CrossRefGoogle Scholar
  2. 2.
    G. J. V. Nossal. Cellular mechanisms of immunologic tolerance. Ann. Rev. Immunol. 1:33–62 (1983).CrossRefGoogle Scholar
  3. 3.
    P. Ralph. Functional subsets of murine and human B lymphocytes cell lines. Immunol. Rev. 48:107–121 (1979). CrossRefGoogle Scholar
  4. 4.
    A. W. Boyd, and J. S. Schrader. The regulation of growth differentiation of a murine B cell lymphoma II. The inhibition on WEHI-231 by anti-immunoglobulin antibodies. J. Immunol. 126:2466–2469 (1981).Google Scholar
  5. 5.
    A. L. DeFranco, J. M. Davis, and W. E. Paul. WEHI-231 as a tumor model for tolerance induction in immature B lymphocytes. In: B and T cell tumors: Biological and clinical aspects edited by E. Vitteta. Academic Press (1982).Google Scholar
  6. 6.
    M. J. Berridge, and R. F. Irvine. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    V. C. Maino, M. J. Hayman, and M. J. Crumpton. Relationship between enhanced turnover of phosphatidylinositol and lymphocyte activaion by mitogens. Biochem. J. 146:247–252 (1975).Google Scholar
  8. 8.
    S. A. Grupp, and J. A. K. Harmony. Increased phosphatidylinositol metabolism is an important but not an obligatory early event in B lymphocyte activation. J. Immunol. 134:4087–4094 (1985).Google Scholar
  9. 9.
    K. M. Coggeshall, and J. C. Cambier. B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. J. Immunol. 133:3382–3386 (1984).Google Scholar
  10. 10.
    M. J. Berridge. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidlinositol. Biochem. J. 212:849 (1983).Google Scholar
  11. 11.
    M. K. Bijsterbosch, C. J. Meade, G. A. Turner, and G. G. Klaus. B lymphocyte receptors and polyphosphoinositide degradation. Cell 41:999–1006 (1985).CrossRefGoogle Scholar
  12. 12.
    K. A. Fahey, and A. L. DeFranco. Phosphoinositide breakdown is induced by anti-immunoglobulin in WEHI-231 B lymphoma cells. Manuscript in preparation (1986).Google Scholar
  13. 13.
    A. S. Kraft, W. B. Anderson, H. L. Cooper and J. J. Sando. Decrease in cytosolic calcium/phospholipid-dependent protein kinase activity following phorbol ester treatment of EL4 thymoma cells. J. Biol. Chem. 257:13193–13196 (1982).Google Scholar
  14. 14.
    A. E. Nel, M. W. Wooten, G. E. Landreth, P. J. Goldschmidt-Clermont, H. C. Stevenson, P. J. Miller and R. M. Galbraith. Translocation of phospholipid/Ca2+-dependent protein kinase in B-lymphocytes activated by phorbol ester or cross-linkage of membrane immunoglobulin. Biochem. J. 233:145–149 (1986).Google Scholar
  15. 15.
    H. Streb, R. F. Irvine, M. J. Berridge, and I. Schulz. Release of Ca 2+ from a nonhmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    J. Labaer, R. Y. Tsien, K. A. Fahey, and A. L. DeFranco. Stimulation of the antigen receptor of WEHI-231 B lymphoma cells results in a voltage-independent increase in cytoplasmic calcium. Manuscript submitted (1986).Google Scholar
  17. 17.
    J. Braun, R. Sha’afi, and E. R. Unanue. Crosslinking by ligands to surface immunoglobulin triggers mobilization of intracellular Ca in B lymphocytes. J. Cell. Biol. 82:755–766 (1979).CrossRefGoogle Scholar
  18. 18.
    T. Pozzan, P. Arslan, R. Y. Tsien, and T. J. Rink. Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J. Cell Biol. 94:335–340 (1982).CrossRefGoogle Scholar
  19. 19.
    J. G. Monroe, J. E. Niedel, and J. C. Cambier. B cell activation. IV. Induction of cell membrane depolarizaion and hyper-I-A expression by phorbol diesters suggests a role for protein kinase C in murine B lymphocyte activation. L Immunol. 132:1472–1478 (1984).Google Scholar
  20. 20.
    J. G. Monroe, and M. J. Kass. Molecular events in B cell activation. J. Immunol. 135:1674–1682 (1985).Google Scholar
  21. 21.
    J. T. Ransom, and J. C. Cambier. VII. Independent and synergistic effects of mobilized calcium and diacylglycerol on membrane potential and I-A expression. J. Immunol. 136:66–72 (1986).Google Scholar
  22. 22.
    M. R. Gold, K. A. Fahey, and A. L. DeFranco. Effects of phorbol esters on anti-IgM-induced biological and biochemical effects in WEHI-231 B lymphoma cells. Manuscript in preparation (1986).Google Scholar
  23. 23.
    D. B Wilson, T. E. Bross, S. L. Hofmann, and P. W. Majerus. Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J. Biol. Chem. 11718–11724 (1984).Google Scholar
  24. 24.
    J. P. Jakway, W. R. Usinger, M. R. Gold, R. I. Mishell, and A. L. DeFranco. Growth regulation of the B lymphoma cell line WEHI-231 by anti-immunoglobulin and lipopolysaccharide. Submitted for publication (1986).Google Scholar
  25. 25.
    J. P. Jakway, and A. L. DeFranco. unpublished observations.Google Scholar
  26. 26.
    J. P. Jakway, and A. L. DeFranco. Bacterial lipopolysaccharide activates a Gi-type coupling component in B lymphocyte and macrophage cell lines. Manuscript in preparaion (1986).Google Scholar
  27. 27.
    J. D. Hildebrandt, R. D Sekura, J. Codina, R. Iyengar, C. R. Manclark, and L. Birnbaumer. Stimulation and inhibition of adenylate cyclases by distinct regulatory proteins. Nature 302:706–707 (1983).ADSCrossRefGoogle Scholar
  28. 28.
    K. H. Jacobs, and G. Schultz. Occurence of a hormone-sensitive inhibitory coupling component of the adeynlate cyclase in S49 lymphoma cyc- variants. Proc. Natl. Acad. Sci USA 80:3899–3902 (1983).ADSCrossRefGoogle Scholar
  29. 29.
    A. G. Gilman. G proteins and dual control of adenylate cyclase. Cell 36:577–579 (1984).CrossRefGoogle Scholar
  30. 30.
    M. Schramm, and Z. Selinger. Message transmission: Receptor controlled adenylate cyclase system. Science 225:1350–1356 (1984).ADSCrossRefGoogle Scholar
  31. 31.
    E. J. Neer, J. M. Lok, and L. G. Wolf. Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J. Biol. Chem. 259:14222–14229 (1984).Google Scholar
  32. 32.
    J. P. Jakway, and A. L. DeFranco. The responses of B lymphocyte and macrophage cell lines to bacterial lipopolysaccharide are inhibited by opertussis toxin. Manuscript in preparation (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Anthony L. DeFranco
    • 1
  1. 1.Department of Microbiology and Immunology and the G.W. Hooper FoundationUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations