Autocrine Growth Function of Interleukin-1-Like Molecules Secreted by Neoplastic Human B Cells

  • G. Scala
  • F. Ferrara
  • T. Pastore
  • F. Alfinito
  • R. Pizzano
  • L. Corbo
  • S. Venuta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)


Interleukin 1 (IL-1) molecules are hormone-like polypeptides that exert a variety of roles in immunoregulation and inflammation (1,2). The production of IL-1-like molecules, originally ascribed to monocyte cells (3), has been recently associated with normal non monocytic cell types such as human B cells and subsets of human large granular lymphocytes (4,5). The secretion of IL-1-like molecules in normal cells appears to be strictly regulated since it is dependent on specific stimuli such as lipopolysaccharide E. coli (LPS) or silica particles, and can be modulated by a variety of pharmacological agents or serum components (6). In recent years a variety of neoplastic cell types have been shown to constitutively secrete molecules whose biochemical and biological characteristics resemble those of monocyte-derived IL-1 (2).


Conditioned Medium Autocrine Growth Factor Mixed Leukocyte Reaction Mouse Thymocyte Autocrine Pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. Dinarello. Interleukin 1. Rev. Infect. Dis. 6:51. (1984).CrossRefGoogle Scholar
  2. 2.
    J. J. Oppenheim, and I. Gery. Interleukin 1 is more than an interleukin. Immunol. Today 3:113. (1982).CrossRefGoogle Scholar
  3. 3.
    I. Gery, R. K. Gershon, and B. Waksman. Potentiation of the T lymphocyte response to mitogens. I. The responding cell. J. Exp. Med. 136:128, (1972).CrossRefGoogle Scholar
  4. 4.
    J. J. Oppenehim, G. Scala, Y. d. Kuang, K. Matsushimma, M. B. Sztein, and P. S. Steeg. The role of cytokines in promoting accessory cell function. Progress in Immunology 5:285, (1984).Google Scholar
  5. 5.
    G. Scala, P. Allavena, J. Y. Djeu, T. Kasahara, J. R. Ortaldo, R. B. Herberman, and J. J. Oppenhheim. Human large granular lymphocytes are potent producers of interleukin 1. Nature 309:56, (1984).ADSCrossRefGoogle Scholar
  6. 6.
    G. Scala, K. Matsushima, and J. J. Oppenheim. Inhibitory cells and factors that regulate the production and activities of interleukin 1 (IL-1). Proceedings of the International Symposium on Immunopharmacology. A. Miecher ed. Academic Press, (1984).Google Scholar
  7. 7.
    M. B. Sporn, and T. Totaro. Autocrine stimulation and malignant transformation of cells. N. Engl. J. Med. 303:878, (1980).CrossRefGoogle Scholar
  8. 8.
    P. L. Kaplan, M. Anderson, and B. Ozanne. Transforming growth factor(s) production enables cells to grow in the absence of serum: An autocrine system. Proc. Natl. Acad. Sci. USA 79:485, (1982).ADSCrossRefGoogle Scholar
  9. 9.
    S. Venuta, R. Mertelsmann, K. Weite, S. P. Feldman, C. Y. Wang, and M. A. S. Moore. Production and regulation of interleukin-2 in human lymphoblastic leukemias studied with T-cell monoclonal antibodies. Blood 61:781, (1983).Google Scholar
  10. 10.
    S. Venuta, M. C. Turco, S. Feronne, L. Corbo, G. Morrone, K. Weite, and R. Mertelsmann. IL-2 and leukemia. In Oncogenes to Tumor Antigens G. Ciraldo et al. Elsevier Science Publishers pp 59, (1985).Google Scholar
  11. 11.
    J. Gordon, S. C. Ley, M. D. Melamed, P. Aman, and N. C. Hughes-Jonnes. Soluble factor requirements for the autostimulatory growth of B lymphoblasts immortalized by epstein-barr virus. J. Ex. Med. 159:1554, (1984).CrossRefGoogle Scholar
  12. 12.
    G. Scala, Y. D. Kuang, R. E. Hall, A. V. Muchmore, and J. J. Oppenheim. Accessory cell function of human B cells. I. Production of both interleukin-1 like activity and an interleukin-1 inhibitory factor by an EBV-transformed human B cell line. J. Exp. Med. 159:1637, (1984).CrossRefGoogle Scholar
  13. 13.
    J. L. Butler, A. Muraguchi, H. C. Lane, and A. S. Fauci. Development of a human T-T cell hybridoma secreting B cell growth factor. J. Exp. Med. 157:60, (1980).CrossRefGoogle Scholar
  14. 14.
    J. Favaloro, R. Treisman, and R. Kamen. Transcription maps of polyoma virus-specific RNA: analysis by two dimensional nuclease SI gel mapping. Meth. Enzymol. 65:718, (1980).CrossRefGoogle Scholar
  15. 15.
    G. Scala, G. Morrone, and S. Venuta. Autocrine growth function of Interleukin 1 -like molecules. Submitted.Google Scholar
  16. 16.
    H. J. Leibson, P. Marrack, and J. W. Kappler. B cell helper factors I. Requirement for both Interleukin 2 and another 40,000 Mol Wt Factor. J. Exp. Med. 154:1681, (1981).CrossRefGoogle Scholar
  17. 17.
    R. Palacios, G. Henson, M. Steinmetz, and J. P. McKearn. Interleukin-3 supports growth of mouse pre-B-cell clones in vitro. Nature 309:126, (1984).ADSCrossRefGoogle Scholar
  18. 18.
    M. M. Kelly, M. E. Rosemiller, A. J. Dauleno, and R. C. Newton. Development of an antibody specific for human interleukin 1. Lymphokine Res. 3:251, (1984).Google Scholar
  19. 19.
    J. L. Ambrus Jr, and A. S. Fauci. Human B lymphoma cell line producing B cell growth factor. L Clin. Investigation 75:732, (1985).CrossRefGoogle Scholar
  20. 20.
    G. R. Mundy, K. J. Ibbotson, and S. M. D’Souza. Tumor Products and the hypercalcemia of malignancy. J. Clin. Invest. 76:391, (1985).CrossRefGoogle Scholar
  21. 21.
    C. H. Heldin, and B. Westermark. Growth factors: mechanism of action and relation to oncogenes. Cell 39, (1984).Google Scholar
  22. 22.
    M. Howard, S. B. Mizel, L. lachman, J. Ansel, B. Johnson, and W. E. Paul. Role of interleukin 1 in anti-immunoglobulin-induced B cell proliferation. J. Immunol. 135:1132, (1985).Google Scholar
  23. 23.
    K. Matsushima, A. Procopio, H. Abe, G. Scala, J. R. Ortaldo, and J. J. Oppenheim. Production of interleukin 1 activity by normal human peripheral blood B lymphocytes. J. Immunol. 135:1132. (1985).Google Scholar
  24. 24.
    S. K. Dower, S. R. Kronheim, C. J. March, P. J. Conlon, T. P. Hopp, S. Gillis, and D. L. Urdal. Detection and characterization of high affinity plasma membrane receptors for human interleukin 1. J. Exp. Med. 162:501, (1985).CrossRefGoogle Scholar
  25. 25.
    A. Mantovani. Origin and function of tumor-associated macrophages in murine an human neoplasics. In Progress in Immunology V. T. Tada, Y. Yamamura eds. Academic Press, New York, pp 1001, (1984).Google Scholar
  26. 26.
    G. A. Currie. promotion of fibrosarcoma cell growth by products of singeneic host macrophages. Br. J. Cancer 44:506, (1981).CrossRefGoogle Scholar
  27. 27.
    H. A. Armelin, M. C. S. Armelin, K. Kelly, T. Stewart, P. Leder, B. H. Cochran, and C. D. Stiles. Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature 310:655, (1984).ADSCrossRefGoogle Scholar
  28. 28.
    S. R. Hann, C. B. Thompson, and R. N. Eisenman. c-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature 314:366, (1985).ADSCrossRefGoogle Scholar
  29. 29.
    P. E. Auron, A. c. Webb, L. J. Rosenwasser, S. F. Mucci, A. Rich, S. M. Wolff, and C. A. Dinarello. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc. Natl. Acad. Sci. USA 81:7907. (1984).ADSCrossRefGoogle Scholar
  30. 30.
    C. J. March, B. Mosley, A. Larsen, D. P. Cerretti, G. Braedt, V. Price, S. Gillis, C. S. Henney, S. R. Kronnheim, K. Grabstein, P. J. Conlon, T. P. Hopp. and D. Cosman. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315:641, (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • G. Scala
    • 1
  • F. Ferrara
    • 2
  • T. Pastore
    • 2
  • F. Alfinito
    • 1
  • R. Pizzano
    • 1
  • L. Corbo
    • 1
  • S. Venuta
    • 3
  1. 1.Institute of Biochemical SciencesNaples University Medical SchoolNaplesItaly
  2. 2.Division of HematologyCardarelli General HospitalNaplesItaly
  3. 3.Institute of Experimental and Clinical Oncology, Medical SchoolUniversity of R.C.CatanzaroItaly

Personalised recommendations