The Multiple Biological Properties of Interleukin-1 Influencing Immunocompetent Cells

  • Charles A. Dinarello
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 213)


The acute phase response is a systemic, generalized reaction despite the fact that most disease processes which induce circulating IL-1 produced at the site of the disease, for example, the lung in pneumonia. Once released into the circulation, IL-1 acts on multiple target organs and induces a variety of biological changes. Considerable attention has also focused on the local production and activity of IL-1. Local concentrations of IL-1 in specialized tissues such as the skin, kidney, endothelium, lymph node and joint space may account for much of its role in disease processes. The role of IL-1’s in acute phase responses will be matched by interest in its effects on bone and cartilage destruction as well as the pathogenesis of arthrosclerosis. The ability of the various IL-1’s to activate lymphocytes, induce the synthesis of acute phase proteins, alter various metabolic and hematologic parameters and to produce fever and sleep has provided the evidence that IL-1’s are more than interleukins but rather multifunctional molecules capable of acting on different cells types.


Acute Phase Protein Acute Phase Response Human Vascular Endothelial Cell Multiple Biological Activity Endogenous Pyrogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. E. Auron, A. C. Webb, L. J. Rosenwasser, S. F. Mucci, A. Rich, S. M. Wolff, and C. A. Dinarello. Nucleotide sequence of human monocyte interleukin-1 precursor cDNA. Proc. Natl. Acad. Sci. USA 81:7907, (1984).ADSCrossRefGoogle Scholar
  2. 2.
    A. C. Webb, P. E. Auron, A. Rich, L. J. Rosenwasser, S. M. Wolff, and C. A. Dinarello. The molecular cloning of human interleukin-1 precursor cDNA and its expression in monkey cells. In: Cellular and Molecular Biology of Lymphokines. Sorg C, Schimpl A, eds. Academic Press, Inc., New York, pp. 685–695, (1985).Google Scholar
  3. 3.
    P. T. Lomedico, U. Gubler, C. P. Hellman, M. Dukovich, J. G. Giri, Y. E. Pam, K. Collier, R. Semionow, A. O. Chua, and S. B. Mizel. Cloning and expression of murine interleukin-1 in Escherchia coli. Nature 312:458, (1984).ADSCrossRefGoogle Scholar
  4. 4.
    P. E. Auron, L. J. Rosenwasser, K. Matsushima, T. Copeland, C. A. Dinarello, J. J. Oppenheim, and A. C. Webb. Human and murine interleukin-1 share sequence similarities. J. Mol. Immunol. 2:231, (1985).Google Scholar
  5. 5.
    C. A. Dinarello. Interleukin-1. Rev. Infect. Dis. 6:51. (1984).CrossRefGoogle Scholar
  6. 6.
    C. A. Dinarello. An update on human interleukin-1: from molecular biology to clinical relevance. J. Clin. Immunol. 5:287, (1985).CrossRefGoogle Scholar
  7. 7.
    A. C. Webb, P. E. Auron, L. J. Rosenwasser, S. F. Mucci, A. Rich, S. M. Wolff, and C. A. Dinarello. Isolation and characterization of human interleukin-1 mRNS by molecular cloning. Brit. J. Rheumatol. 24:(suppl)82, (1985).CrossRefGoogle Scholar
  8. 8.
    J. G. Giri, P. T. Lomedico, and S. B. Mizel. Studies on the synthesis and secretion of interleukin-1. I. A 33,000 molecular weight precursor interleukin-1. J. Immunol. 134:343, (1984).Google Scholar
  9. 9.
    C. A. Dinarello, N. P. Goldin, and S. M. Wolff. Demonstration of two distinct human leukocytic pyrogens. J. Exp. Med. 139:1269, (1974).CrossRefGoogle Scholar
  10. 10.
    D. D. Wood, E. K. Bayne, M. B. Goldring, M. Gowen, D. Hamerman, J. L. Ihrie, P. E. Lipsky, and M-J Staruch. The four biochemically distinct species of human interleukin-1 all exhibit similar biologic activities. J. Immunol. 134:895, (1985).Google Scholar
  11. 11.
    C. A. Dinarello, G. A. H. Clowes Jr., A. H. Gordon, C. A. Saravis, and S. M. Wolff. Cleavage of human interleukin-1: isolation of a fragment isolated from the plasma of febrile humans and monocytes. J. Immunol. 133:1322, (1984).Google Scholar
  12. 12.
    E. S. Kimball, S. F. Pikeral, J. J. Oppenheim, and J. L. Rossio. Interleukin-1 activity in normal human urine. J. Immunol. 133:256, (1984).Google Scholar
  13. 13.
    J. Van Damme, M. De Ley, G. Opdenakker, A. Billiau, and P. De Somer. Homogeneous interferon-inducing 22K factor is related to endogenous pyrogen and interleukin-1. Nature 314:266, (1985).ADSCrossRefGoogle Scholar
  14. 14.
    P. Cameron, G. Limjuco, J. Rodkey, C. Bennett, and J. A. Schmidt. Amino acid sequence analysis of human interleukin 1 (IL-1). J. Exp. Med. 162:790, (1985).CrossRefGoogle Scholar
  15. 15.
    S. B. Mizel, and D. Mizel. Purification to apparent homogeneity of murine interleukin-1. J. Immunol. 126:8321, (1981).Google Scholar
  16. 16.
    C. J. March, B. Mosley, A. Larsen, D. P. Cerretti, G. Braedt, V. Price, S. Gillis, C. S. Henney, S. R. Kronheim, K. Grabstein, P. J. Conlon, T. P. Hopp, and D. Cosman. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315:644, (1985).ADSCrossRefGoogle Scholar
  17. 17.
    S. Demczuk, B. Mach, and J-M Dayer. Differential expression of messenger RNA’s for stimulated human monocyte-macrophage cultures. Brit. J. Rheumatol. 24 (suppl):77, (1985).CrossRefGoogle Scholar
  18. 18.
    J. T. Windle, H. S. Shin, and J. F. Morrow. Induction of interleukin-1 messenger RNA and translation in oocytes. J. Immunol. 132:1317, (1984).Google Scholar
  19. 19.
    Y. Furutani, M. Notake, M. Yamayoshi, J. Yamagishi, H. Nomura, M. Ohue, T. Fukui, M. Yamada, and S. Nakamura. Cloning and characterization of the cDNAs for human and rabbit interleukin-1 precursor. Nucleic Acids Res 13:5869, (1985).CrossRefGoogle Scholar
  20. 20.
    P. A. Murphy, P. L. Simon, and W. F. Willoughby. Endogenous pyrogens made by rabbit peritoneal exudate cells are identical with lymphocyte activating factors made by rabbit alveolar macrophages, J. Immunol. 124:2498, (1980).Google Scholar
  21. 21.
    S. L. Kunkel, S. W. Chensue, and S. H. Phan. Prostaglandins as endogenous mediators of interleukin 1 production. J. Immunol. 136:186, (1986).Google Scholar
  22. 22.
    G. Scala, Y. D. Kuang, R. E. Hall, A. V. Muhmore, and J. J. Oppenheim. Accessory cell function of human B cells. Production of both interleukin-1-like activity and an interleukin-1 inhibitory factor by an EBV-transformed human B cell line. J. Exp. Med. 159:1637, (1984).CrossRefGoogle Scholar
  23. 23.
    L. Rimsky, H. Wakasugi, P. Ferrara, P. Robin, J. Capdevielle, T. Tursz, D. Fradelizi, and J. Bertoglio. Purification to homogeneity and NH2-terminal amino acid sequence of a novel interleukin-1 species derived from a human B cell line. J. Immunol., in press (1986).Google Scholar
  24. 24.
    T. V. Bell, C. B. Harley, and D. N. Sauder. Human keratinocytes contain mRNA homologous to beta interleukin-1. Fed. Proc., in press (1986).Google Scholar
  25. 25.
    D. H. Lovett, J. L. Ryan, and R. B. Sterzel. Stimulation of rat mesangial cell proliferation by macrophage interleukin-1. J. Immunol. 131:2830, (1983).Google Scholar
  26. 26.
    A. Fontana, H. Hengartner, E. Weber, K. Fehr, P. J. Grob, and G. Cohen. Interleukin-1 activity in the synovial fluid of patients with rheumatoid arthritis. Rheumatol. Internat. 2:49, (1982).CrossRefGoogle Scholar
  27. 27.
    D. Giulian, T. J. Baker, and D. G. Young. Interleukin-1 as a mediator of brain cell growth. In: The Physiologic, Metabolic, and Immunologic Actions of Interleukin-1. Kluger MJ, Oppenheim JJ, Powanda MC. (eds). Alan R. Liss, Inc., New York, p 133 (1985).Google Scholar
  28. 28.
    G. Scala, P. Allaven, J. X. Djew, T. Kasahara, J. R. Ortaldo, R. B. Herberman, and J. J. Oppenheim. Human large granular lymphocytes are potent producers of interleukin-1. Nature 309:56, (1984).ADSCrossRefGoogle Scholar
  29. 29.
    G. Grabner, T. A. Luger, G. Smolin, and J. J. Oppenheim. Corneal epithelial cell-derived thymocyte activating factor. Invest. Ophthalmol. Vis. Sci. 23:757, (1982).Google Scholar
  30. 30.
    M. R. Windt, and L. J. Rosenwasser. Human vascular endothelial cells produce interleukin-1. Lymphokine Res. 3:175A. (1984).Google Scholar
  31. 31.
    P. Libby, J. M. Ordovas, K. R. Auger, A. H. Ribbins, L. K. Birinyi, and C. A. Dinarello. Inducible interleukin-1 gene expression in adult human vascular endoehelial cells. Amer. J. Path. 124:179, (1986).Google Scholar
  32. 32.
    P. Knudsen, C. A. Dinarello, and T. B. Strom. Purification and characterization of a unique human interleukin-1 from the tumor cell line U937. J. Immunol.. 136:3311, (1986).Google Scholar
  33. 33.
    L. B. Lachman. Purification of human interleukin-1. Fed. Proc. 42:2639. (1984).Google Scholar
  34. 34.
    S. M. Krane, J-M. Dayer, L. S. Simon, and S. Byrne. Mononuclear cell-conditioned medium containing mononuclear cell factor (MCF), homologous with interleukin-1, stimulates collagen and fibronectin synthesis by adherent rheumatoid synovial cells: effects of prostaglandin E2 and indomethacin. Collagen Rel. Res. 5:99, (1985).CrossRefGoogle Scholar
  35. 35.
    J. A. Schmidt, C. N. Oliver, T. L. Lepe-Zuniga, I. Green, and I. Gery. Silica-stimulated monocytes release fibroblast proliferations factors identical to interleukin-1. J. Clin. Invest. 73:1462, (1984).CrossRefGoogle Scholar
  36. 36.
    M. Dukovich, J. M. Severin, S. J. White, S. Yamazaki, and S. B. Mizel. Stimulation of fibroblast proliferation and prostaglandin production by purified recombinant murine interleukin-1. Clin. Immunol. Immunopathol.. in press (1986).Google Scholar
  37. 37.
    K. A. Thomas, M. Rios-Candelore, G. Gimenez-Gallego, J. DiSalvo, C. Bennett, J. Rodkey, and S. Fitzpatrick. Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin-1. Proc. Natl. Acad. Sci. USA 82:6409, (1985).ADSCrossRefGoogle Scholar
  38. 38.
    G. Gimenez-Gallego, J. Rodkey, C. Bennett, M. Rios-Candelore, J. DiSalvo, and K. Thomas. Brain-derived acidic fibroblast growth factor: complete amino acid sequence and homolgies. Science 230:1385, (1985).ADSCrossRefGoogle Scholar
  39. 39.
    R. C. Reuben, D. S. Neblock, G. A. Koch, R. H. Malavarca, P. J. Lisi, R. A. Zivin, P. E. Auron, C. A. Dinarello, and T. J. Livelli. Stable mouse cell line producing human interleukin-1. J. Cell. Biochem. (Suppl) 10A:80, (1986).Google Scholar
  40. 40.
    C. A. Dinarello, J. G. Cannon, J. W. Mier, H. A. Bernheim, G. LoPreste, D. L. Lynn, R. N. Love, A. C. Webb, P. E. Auron, R. C. Reuben, A. Rich, S. M. Wolff, and S. D. Putney. Multiple biological activities of human recombinant interleukin-1. J. Clin. Invest., 77:1734, (1986).CrossRefGoogle Scholar
  41. 41.
    J-M. Dayer, B. DeRochemonteiz, B. Burrus, S. Demczuk, and C. A. Dinarello. Human recombinant interleukin-1 stimulates collagenase and prostaglandin E2 production by human synovial cells. J. Clin. Invest., 77:645, (1986).CrossRefGoogle Scholar
  42. 42.
    J. M. Kreuger, J. Walter, C. A. Dinarello, S. M. Wolff, and L. Chedid. Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am. J. Physiol. 246:R994, (1984).Google Scholar
  43. 43.
    D. M. McCarthy, M. J. Kluger, and A. J. Vander. The role of fever in appetite suppression after endotoxin administration. Am. J. Clin. Nutr. 40:310, (1984).Google Scholar
  44. 44.
    G. Ramadori, J. D. Sipe, C. A. Dinarello, S. B. Mizel, and H. R. Colten. Pretranslational medulation of acute phase hepatic protein synthesis by murine recombinant interleukin-1 and purified human IL-1. J. Exp. Med. 162:930, (1985).CrossRefGoogle Scholar
  45. 45.
    G. Ramadori, J. Sipe, and H. Colten. Expression and regulation of the murine serum amyloid A (SAA) gene in extrahepatic sites. J. Immunol. 135:3645, (1985).Google Scholar
  46. 46.
    E. Canalis. Interleukin-1 has independent effects on DNA and collagen synthesis in cultures of rat calvariae. Endocrinology. 118:74, (1986).CrossRefGoogle Scholar
  47. 47.
    V. Rossi, F. Breviario, P. Ghezzi, E. Dejana, and A. Mantovani. Interleukin-1 induces prostacyclin in vascular cells. Science 229:1174, (1985).CrossRefGoogle Scholar
  48. 48.
    C. R. Albrightson, N. L. Baenzigter, and P. Needleman. Exaggerated human vascular cell prostaglandin biosynthesis mediated by monocytes: role of monokines and interleukin 1. J. Immunol. 135:1872–1877, (1985).Google Scholar
  49. 49.
    M. P. Bevilacqua, J. S. Pber, M. E. Wheeler, D. Mendrick, R. S. Cotran, and M. A. Gibrone Jr. Interleukin-1 acts on cultured human vascular endothelial cells to increase the adhesion of polymorphonuclear leukocytes, monocytes and related leukocyte cell lines. J. Clin. Invest. 76:2003, (1985).CrossRefGoogle Scholar
  50. 50.
    R. P. Schleimer, and B. K. Rutledge. Cultured human vascular endothelial cells acquire adhesiveness for neutrophils after stimulation with interleukin 1, endotoxin, and tumor-promoting phorbol diesters. J. Immunol. 136:649, (1986).Google Scholar
  51. 51.
    C. J. Dunn, and W. E. Fleming. The role of interleukin-1 in the inflammatory response with particular reference to endothelial cell-leukocyte adhesion, In: The Physiologic, Metabolic, and Immunologic Actions of Interleukin-1, Kluger MJ, Oppenheim JJ, Powanda MC, eds. New York, Alan R. Liss, Inc, pp 45 (1985).Google Scholar
  52. 52.
    J. Herman, C. A. Dinarello, M. C. Kew, and A. R. Rabson. The role of interleukin 1 (IL-1) in tumor NK cell interactions: correction of defective NK cell activity in cancer patients by treating target cells with IL-1. J. Immunol. 135:2882, (1985).Google Scholar
  53. 53.
    M. I. Cybulsky, I. G. Colditz, and H. Z. Movat. Interleukin-1 activity in the local recruitment of PMN’s: Its potential role in encotoxin-induced acute inflammation. Fed. Proc. 44:1260, (1985).Google Scholar
  54. 54.
    G. Beck, G. S. Habicht, J. L. Benach, and F. Miller. Interleukin-1: A common endogenous mediator of inflammation and the local Schwartzman reaction. J. Immunol.. 136:3025, (1986).Google Scholar
  55. 55.
    M. P. Bevilacqua, J. S. Pober, G. R. Majeau, R. S. Cotran, and M. A. Gimbrone Jr. Interleukin-1 induces biosynthesis and cell surface expression of procoagulant activity on human vascular endothelial cells. J. Exp. Med. 160:618, (1984).CrossRefGoogle Scholar
  56. 56.
    M. P. Bevilaclqua, J. S. Pober, M. E. Whyeeler, D. L. Mendrick, W. Fiers, and M. A. Gimbrone Jr. Interleukin-1 and tumor necrosis factor independently activate vascular endothelial cell functions. Fed. Proc. 45:942, (1986).Google Scholar
  57. 57.
    J-D. Vassalli, J-M. Dayer, A. Wohlwend, and D. Belin. Concomitant secretion of prourokinnase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macrocytes. J. Exp. Med. 159:1653, (1984).CrossRefGoogle Scholar
  58. 58.
    R. Montesano, L. Orci, and P. Vassalli. Human endothelial cell cultures: phenotypic modulation by leukocyte interleukins. J. Cell. Physiol. 122:424, (1985).CrossRefGoogle Scholar
  59. 59.
    B. S. Ooi, E. P. MacCarthy, A. Hsu, and Y. M. Ooi. Human mononuclear cell modulation of endothelial cell proliferation. J. Lab. Clin. Med. 102:428, (1983).Google Scholar
  60. 60.
    P. Libby, M.W. Janicka, and C. A. Dinarello. Interleukin-1 promotes production of endothelial cells of activity that stimulates the growth of arterial smooth muscle cells. Fed. Proc. 44:737, (1985).Google Scholar
  61. 61.
    K. S. Zuckerman, G. C. Bagby Jr, E. McCall, B. Sparks, J. Wells, V. Patel, and D. Goodrum. A monokine stimulates production of human erythroid burst-promoting activity by endothelial cells in vitro. J. Clin. Invest. 75:722, (1985).CrossRefGoogle Scholar
  62. 62.
    G. C. Bagby Jr, C. A. Dinarello, and E. McCall. Monocyte derived GM-CSF recruiting activity is IL-1. J. Clin. Invest., in press (1986).Google Scholar
  63. 63.
    W. Shanahan, and J. Korn. Endothelial cells express IL-1-like activity as assessed by enhancement of fibroblast PGE synthesis. Clin. Res. 32:666A, (1984).Google Scholar
  64. 64.
    C. R. Wagner, R. M. Vetto, and D. R. Burger. Expression of I-region-associated antigen (Ia) and interleukin 1 by subcultured human endothelial cells. Cell. Immunol. 93:91. (1985).CrossRefGoogle Scholar
  65. 65.
    D. M. Stern, I. Bank, P. P. Nawroth, J. Cassimeris, W. Kisiel, J. W. Fenton, C. A. Dinarello, L. Chess, and E. A. Jaffee. Self-regulation of procoagulant events on the endothelial cell surface. J. Exp. Med. 162:1223, (1985).CrossRefGoogle Scholar
  66. 66.
    W. P. Arend, F. G. Joslin, and R. J. Massoni. Effects of immune complexes on production by human monocytes of interleukin 1 or an interleukin 1 inhibitor. J. Immunol. 134:3868, (1985).Google Scholar
  67. 67.
    J. R. Gamble, J. M. Harlan, S. J. Klebanoff, and M. A. Vadas. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc. Natl. Acad. Sci. USA. 82:8667, (1986).ADSCrossRefGoogle Scholar
  68. 68.
    M. P. Bevilacqua, J. S. Pober, G. R. Majeau, W. Fiers, R. S. Cotran, and M. A. Gibron Jr. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin-1. Proc. Natl. Acad. Sci. USA. 83:4533, (1986).ADSCrossRefGoogle Scholar
  69. 69.
    C. A. Dinarello, J. G. Cannon, S. M. Wolff, H. A. Bernheim, B. Beutler, A. Cerami, M. A. Palladino Jr, and J. V. O’Connor. Recombinant human tumor necrosis factor/cachectin (rTNF) is an endogenous pyrogen and induces interleukin- (IL-1). J. Exp. Med., 163:1433, (1986).CrossRefGoogle Scholar
  70. 73.
    P. R. Bachwich, S. W. Chensue, J. W. Larrick, and S. L. Hunkel. Tumor necrosis factor stimulates interleukin-1 and PGE2 release from murine peritoneal macrophages. Fed. Proc. 45:942. (1986).Google Scholar
  71. 71.
    P. Nawroth, I. Bank, J. Cassimeris, L. Chess, and D. Stern. Endothelium is a target tissue for tumor necrosis factor. J. Exp. Med., 163:1363, (1986).CrossRefGoogle Scholar
  72. 72.
    L. J. Rosenwasser, C. A. Dinarello, and A. Rosenthal. Adherent cell function in murine T-lymphocyte antigen recognition. IV. enhancement of murine T-cell antigen recognition by human leukocytic pyrogen. J. Exp. Med. 150:709–714, (1979).CrossRefGoogle Scholar
  73. 73.
    D. F. Hanson, and P. A. Murphy. Demonstration of interleukin-1 activity in apparently homogeneous specimens of the pI 5 form of rabbit endogenous pyrogen. Infect. Immun. 45:483–490. (1984).Google Scholar
  74. 74.
    C. A. Dinarello, H. A. Bernheim, J. G. Cannon, G. LoPreste, S. J. C. Warner, A. C. Webb, and P. E. Auron. Purified 35-S-methionine, 3-H-leucine labelled human monocyte interleukin-1 with endogenous pyrogen activity. Brit. J. Rheumat. 24(suppl):59–64, (1985).CrossRefGoogle Scholar
  75. 75.
    J. Saklatvala, S. J. Sarsfield, and Y. Townsen. Pig interleukin-1. Purification of two immunologically different leukocyte proteins that cause cartilage resorption, lymphocyte activation, and fever. J. Exp. Med. 162:1208, (1985).CrossRefGoogle Scholar
  76. 76.
    K. Matsushima, S. K. Durum, E. S. Kimball, and J. J. Oppenheim. Purification of human interleukin-1 and identity of thymocyte co-mitogenic factor, fibroblast proliferation factor, acute phase protein inducing factor, and endogenous pyrogen. Cell. Immunol. 29:290, (1985).CrossRefGoogle Scholar
  77. 77.
    C. A. Dinarello, H. A. Bernheim, G. W. Duff, H. V. Le, T. L. Nagabhushan, N. C. Hamilton, and F. Coceani. Mechanisms of fever induced by recombinant human interferon. J. Clin. Invest. 74:906, (1984).CrossRefGoogle Scholar
  78. 78.
    K. Onozaki, K. Matsushima, B. B. Aggarwal, and J. J. Oppenheim. Interleukin-1 as a cytocidal factor for several tumor cell lines. J. Immunol. 135:3962, (1985).Google Scholar
  79. 79.
    L. B. Lachman, C. A. Dinarello, N. Lansa, and I. J. Fidler. Natural and recombinant human interleukin-1 is cytotoxic for human melanoma cells. J. Immunol., 136:3098, (1986).Google Scholar
  80. 80.
    T. Mandrup-Poulsen, K. Bendtzen, J. Nerup, C. A. Dinarello, M. Svenson, and J. H. Nielsen. Affinity-purified human interleukin-1 is cytotoxic to isolated islets of Langerhans. Diabetologia. 29:63, (1986).CrossRefGoogle Scholar
  81. 81.
    B. Beutler, and A. Cerami. Recombinant interleukin-1 suppresses lipoprotein lipase activity in 3T3-L cells. J. Immunol. 135:3969, (1985).Google Scholar
  82. 82.
    B. J. Sugarman, B. B. Aggarwal, P. E. Hass, I. S. Figari, M. A. Palladino Jr, and H. M. Shepard. Recombinant human tumor necrosis factor-alpha: Effects on proliferation of normal and transformed cells in vitro. Science 230:943, (1985).ADSCrossRefGoogle Scholar
  83. 83.
    D. H. Perlmutter, C. A. Dinarello, P. Punsal, and H. R. Colten. Cacectin/tumor necrosis factor regulates hepatic acute phase gene expression. J. Clin. Invest., in press (1986).Google Scholar
  84. 84.
    J-M. Dayer, B. Beutler, and A. Cerami. Cachectin/tumor necrosis factor stimulates synovial cells and fibroblasts to produce collagenase and prostaglandin E2. J. Exp. Med., 162:2163, (1985).CrossRefGoogle Scholar
  85. 85.
    J. M. Williams, D. DeLoria, J. A. Hansen, C. A. Dinarello, R. Loertscher, H. M. Shapiro, and T. B. Strom. The events of primary T cell activation can be staged by use of sepharose-bound anti-T3 (64.1) monoclonal antibody and purified interleukin-1. J. Immunol. 135:2249, (1985).Google Scholar
  86. 86.
    K. Matsushima, A. Procopio, H. Abe, G. Scala, J. R. Ortaldo, and J. J. Oppenheim. Production of interleukin-1 activity by normal human peripheral blood B-cells. J. Immunol. 135:1132, (1985).Google Scholar
  87. 87.
    E. A. Kurt-Jones, J-M. Kiely, and E. R. Unahue. Conditions required for expression of membrane IL-1 on B-cells. J. Immunol.. 135:1548, (1985).Google Scholar
  88. 88.
    B. Kepe-Zuniga, and I. Gery. Production of intracellular and extracellular interleukin-1 (IL-1) by human monocytes. Clin. Immunol. Immunopath. 31:222, (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Charles A. Dinarello
    • 1
  1. 1.From the Department of MedicineTufts University School of MedicineBostonUSA

Personalised recommendations