Thermoacoustic Imaging using a Laser Probe

  • Bernard Cretin
  • Daniel Hauden
Part of the Acoustical Imaging book series (ACIM, volume 15)


In transmission thermoacoustic scanning microscopy, the thermally induced bulk waves are detected on the opposite surface of the sample by a piezoelectric transducer or a laser probe. The use of a compact heterodyne interferometric laser probe enables high resolution and wide frequency range imaging. Such a microscope is described in this paper. Results obtained for inhomogeneous or layered samples are presented and discussed, showing potential applications.


Thermal Wave Laser Probe Acoustical Image High Operating Frequency Heterodyne Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Rosencwaig, R.M. White, Imaging of dopant regions in silicon with thermal-wave electron microscopy, Appl. Phys. Lett., 38(3), 165–167 (1981).CrossRefGoogle Scholar
  2. 2.
    Y. Martin, E.A. Ash, Photodisplacement microscopy using a semiconductor laser, Electron. Lett., vol. 18, n° 18, 763–764 (1982).CrossRefGoogle Scholar
  3. 3.
    T. Baumann, F. Dacol, R.L. Melcher, Transmission thermal wave microscopy with pyroelectric detection, Appl. Phys. Lett., 43(1), 71–73 (1983).CrossRefGoogle Scholar
  4. 4.
    I.J. Cox, C.J.R. Sheppard, Imaging in scanning photoacoustic microscope, J. Acoust. Soc. Am., 76(2), 513–515 (1984).CrossRefGoogle Scholar
  5. 5.
    F. Lepoutre, D. Fournier, A.C. Boccara, Non destructive control of weldings using the mirage detection, J. Appl. Phys., 57(4), 1009–1015 (1985).CrossRefGoogle Scholar
  6. 6.
    C.C. Williams, High resolution photothermal laser probe, Appl. Phys. Lett., 44(12), 1115–1117 (1984).CrossRefGoogle Scholar
  7. 7.
    B. Cretin, D. Hauden, Thermoacoustic scanning microscope using a laser probe, IEEE Ultrasonics Symposium Proceedings, 656–659 (1984).Google Scholar
  8. 8.
    B. Cretin, D. Hauden, Transmission thermoacoustic imaging without contact, “Acoustical Imaging”, vol. 14 (A.J. Berkhout, J. Ridder and L.F. Van der Wal, Ed.), Plenum Press, 653–655 (1985).CrossRefGoogle Scholar
  9. 9.
    H.K. Wickramasinghe, Y. Martin, D.A.H. Spear and E.A. Ash, Optical heterodyne techniques for photoacoustic and photothermal detection, J. Phys. C6, vol. 44, 191–196 (1983).Google Scholar
  10. 10.
    D. Royer, E. Dieulesaint, Y. Martin, Improved version of a polarized beam heterodyne interferometer, IEEE Ultr. Symp. Proc, 432–435 (1985).Google Scholar
  11. 11.
    G. Busse, A. Rosencwaig, Sursurface imaging with photoacoustics, Appl. Phys. Lett., 36(10), 815–816 (1980).CrossRefGoogle Scholar
  12. 12.
    E.A. Ash, Y. Martin, S. Sheard, “Acoustic and thermal wave microscopy”, Acoustical Imaging, vol. 14 (A.J. Berkhout, J. Ridder and L.F. Van der Wal, Ed.), Plenum Press, 343–360 (1985).CrossRefGoogle Scholar
  13. 13.
    J.R. Meyer, M.R. Druer, F.J. Bartoli, Optical heating in semiconductors: laser damage in Ge, Si, InSb and GaAs, J. Appl. Phys., 51(10), 5513–5522 (1980).CrossRefGoogle Scholar
  14. 14.
    A. Rosencwaig, G. Busse, High-resolution photoacoustic thermal-wave microscopy, Appl. Phys. Lett., 36(9), 725–727 (1980).CrossRefGoogle Scholar
  15. 15.
    A. Rosencwaig, Thermal-wave imaging, Science, vol. 218, 223–228 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Bernard Cretin
    • 1
  • Daniel Hauden
    • 1
  1. 1.Laboratoire de Physique et Métrologie des Oscillateurs du Centre National de la Recherche Scientifique associél’Université de Franche-Comté-BesançonBesançonFrance

Personalised recommendations