Protein Carboxyl Methylation in Rat Pancreatic Islets: Possible Role in β-Cell Function

  • J. E. Campillo
  • P. Mena
  • S. Alejo
  • C. Barriga
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 211)


Reversible covalent modifications of proteins play an important role in cellular function. The phosphorylation and dephosphorylation of proteins are perhaps the best characterized examples. Recently, another class of covalent modification, the methylation of protein carboxyl groups, has been linked to the control of behaviour and to signal transduction in both prokaryotes and eukaryotes27,23.


Bovine Adrenal Medulla Methyl Acceptor Protein Carboxyl Islet Homogenate Granule Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Billingsley, P.A. Velletri, R.H. Roth, and R.J. De Lorenzo, Carboxylmethylation of calmodulin inhibits calmodulin-dependent phosphorylation in rat brain membranes and cytosol, J. Biol. Chem. 258:5352 (1983).PubMedGoogle Scholar
  2. 2.
    R.T. Borchardt, J. Olsen, L. Eiden, R.L. Schowen, and C.O. Rutledge, The isolation and characterization of the methyl acceptor protein from adrenal chromaffin granules, Biochem. Biophy. Res. Comm. 83:970 (1978).CrossRefGoogle Scholar
  3. 3.
    A. Boyd and M. Simon, Bacterial Chemotaxis, Ann. Rev. Physiol. 44:501 (1978).CrossRefGoogle Scholar
  4. 4.
    J.E. Campillo and S.J.H. Ashcroft, Protein carboxyl methylation in rat islets of Langerhans, FEBS Lett. 138:71 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    J.E. Campillo, S. Alejo, P. Mena and C. Barriga, Subcellular distribution of protein carboxymethylase and its substrates in rat pancreatic islets, Diabetologia 27:262A (1984).Google Scholar
  6. 6.
    S. Clarke and C.M. O’Connor, Do eukaryotic carboxyl methyl-transferases regulate protein function? TIBS 8:391 (1983).Google Scholar
  7. 7.
    E. Coll-Garcia and J.R. Gill, Insulin release by isolated pancreatic islets of the mouse incubated in vitro, Diabetologia 5:61 (1969).PubMedCrossRefGoogle Scholar
  8. 8.
    R.H. Davis, J.H. Copenhaver, and M.J. Carver, Characterization of acidic proteins in cell nuclei from rat brain by high resolution acrylamide gel electrophoresis, J. Neurochem 19:473 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    E.J. Diliberto and J. Axelrod, Characterization and substrate specificity of a protein carboxymethylase in the pituitary gland, Proc. Natl. Acad. Sci. USA 71:1701 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    E.J. Diliberto, O.H. Viveros, and J. Axelrod, Subcellular distribution of protein carboxymethylase and its endogenous substrates in the adrenal medulla: Possible role in excitation-secretion coupling, Proc. Natl. Acad. Sci. USA, 73:4050 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    E.J. Diliberto and J. Axelrod, Regional and subcellular distribution of protein carboxymethylase in brain and other tissues, J. Neurochem. 26:1159 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    E.J. Diliberto, R.F. O’Dea, and O.H. Viveros, The role of protein carboxymethylase in secretory and chemotactic eukaryotic cells, in: “Transmethylation”, E. Usdine, R.T. Borchardt and CR. Creveling, eds., pp 529–538, Elsevier North-Holland, New York.Google Scholar
  13. 13.
    L.E. Eiden, R.T. Borchardt, and C.O. Rutledge, Protein carboxymethylation in neurosecretory processes, in: “Transmethylation”, E. Usdine, R.T. Borchardt and CR. Creveling, eds., pp 539–546, Elsevier North-Holland, New York.Google Scholar
  14. 14.
    D.D. Flynn, Y. Kloog, L.T. Potter, and J. Axelrod, Enzymatic methylation of the membrane-bound nicotinic acetylcholine receptor, J. Biol. Chem. 257:9513 (1982).PubMedGoogle Scholar
  15. 15.
    C. Gagnon, O.H. Viveros, E.J. Diliberto, and J. Axelrod, Enzymatic methylation of carboxyl groups of chromaffin granule membrane proteins, J. Biol. Chem. 253:3778 (1978).PubMedGoogle Scholar
  16. 16.
    C. Gagnon, W. Bardin, W. Strittmatter, and J. Axelrod, Protein carboxylmethylation in the parotid gland and in the male reproductive system, in: “Transmethylation”, E. Usdine, R.T. Borchardt, and C.R. Creveling, eds., pp 521–528, Elsevier North-Hollard, New York.Google Scholar
  17. 17.
    C. Gagnon and J. Axelrod, Subcellular localization of protein carboxylmethylase and its substrates in rat pituitary lobes, J. Neurochem. 32:567 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Gagnon, S Kelly, V. Manganiello, M. Vaughan, C. Odya, W. Strittmatter, A. Hoffman, and F. Hirata, Modification of calmodulin function by enzymatic carboxyl methylation, Nature 291:515 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Gagnon, D. Harbour, and R. Camato, Purification and characterization of protein methylesterase from rat kidney, J. Biol. Chem. 259:10212 (1984).PubMedGoogle Scholar
  20. 20.
    S.L. Howell, D.A. Young, and P.E. Lacy, Isolation and properties of secretory granules from rat islets of Langerhans III, Studies of the stability of the isolated beta granules, J. Cell. Biol. 41:167 (1969).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Kim and W.K. Paik, Purification and properties of protein methylase II, J. Biol. Chem. 245:1806 (1970).PubMedGoogle Scholar
  22. 22.
    Y. Kloog and J.M. Saavedra, Protein carboxylmethylation in intact rat posterior pituitary lobes in vitro, J. Biol. Chem 258:7129 (1983).PubMedGoogle Scholar
  23. 23.
    D.E. Koshland Jr., Biochemistry of sensing and adaptation in a simple bacterial system, Ann. Rev. Biochem. 50:765 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    R.F. O’Dea, O.H. Viveros, J. Axelrod, S. Aswanikumar, E. Schiffmann, and B.A. Corcoran, Rapid stimulation of protein carboxymethylation in leukocytes by a chemotactic peptide, Nature 272:462 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    V. Povilaitis, C. Gagnon, and S. Heisler, Stimulus-secretion coupling in exocrine pancreas: role of protein carboxyl methylation, Am. J. Physiol. 240:G199 (1981).PubMedGoogle Scholar
  26. 26.
    T. Spector, A simple and linear spectrophotometric assay for protein, Analytical Biochem. 86:142 (1978).CrossRefGoogle Scholar
  27. 27.
    M.S. Springer, M.F. Goy, and J. Adler, Protein methylation in behavioural control mechanisms and in signal transduction, Nature 280:279 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    W.J. Strittmatter, C. Gagnon, and J. Axelrod, β-adrenergic stimulation of protein carboxylmethylation and amylase secretion in rat parotid gland, J. Pharmacol. Exp. Ther. 207:419 (1978).PubMedGoogle Scholar
  29. 29.
    C. Vallejo, M.A. Gunther-Sillero, and R. Marco, Mitochondrial maturation during Artemia Salina embryogenesis. General description of the process, Cell. Mol. Biol. 25:113 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. E. Campillo
    • 1
  • P. Mena
    • 1
  • S. Alejo
    • 1
  • C. Barriga
    • 1
  1. 1.Departamento de Bioquimica, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain

Personalised recommendations