Advertisement

Calcium Regulation of Membrane Fusion during Hormone Secretion

  • H. B. Pollard
  • K. W. Brocklehurst
  • E. J. Forsberg
  • A. Stutzin
  • G. Lee
  • A. L. Burns
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 211)

Abstract

Calcium is only one of a number of second messengers that are becoming increasingly implicated in processes regulating hormone secretion by exocytosis. The most completely studied calcium-dependent secretory system is the chromaffin cell from the adrenal medulla, a system with many operational similarities to the insulin secreting β-cell from islets of Langerhans. Inasmuch as we have had the opportunity to compare these two systems in detail we will attempt to make a number of hopefully interesting comparisons between data obtained from the chromaffin cell and certain data of relevance from the β-cell system.

Keywords

Arachidonic Acid Chromaffin Cell Membrane Fusion Adrenal Medulla Inositol Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bental, P. I. Lelkes, J. Scholama, D. Hockstra, and J. Wilschut, Calcium independent, protein-mediated fusion of chromaffin granule ghosts with liposomes, Biochim. Biophys. Acta 774:296 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    K. W. Brocklehurst and H. B. Pollard, Enhancement of Ca2+-induced catecholamine release by the phorbol ester TPA in digitonin-permeabilized cultured bovine adrenal chromaffin cells, FEBS Lett. 183:107 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    K. W. Brocklehurst, K. Morita, and H. B. Pollard, Characterization of protein kinase C and its role in catecholamine secretion from bovine adrenal medullary cells, Biochem. J. 228:35 (1985).PubMedGoogle Scholar
  4. 4.
    C. E. Creutz, C. J. Paroles, and H. B. Pollard, Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J. Biol. Chem. 253:2858 (1978).PubMedGoogle Scholar
  5. 5.
    C. E. Creutz and D. C. Sterner, Calcium dependence of the binding of synexin to isolated chromaffin granules, Biochem. Biophys. Res. Commun. 114:355 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    C. E. Creutz, L. G. Dowling, J. J. Sando, C. Villar-Palasi, J. H. Whipple, and W. J. Zaks, Characterization of the chromobindins-soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+, J. Biol. Chem. 258:14664 (1983).PubMedGoogle Scholar
  7. 7.
    C. E. Creutz, Cis-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin, J. Cell Biol. 91:247 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    L. G. Dowling and C. E. Creutz, Comparison of synexin isotypes in secretory and non-secretory tissues, Biochem. Biophys. Res. Commun. 132:382 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    L. A. Dunn and R. W. Holz, Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells, J. Biol. Chem. 258:4989 (1983).PubMedGoogle Scholar
  10. 10.
    E. J. Forsberg, E. Rojas, and H. B. Pollard, Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells, J. Biol. Chem., 261;4915 (1986).PubMedGoogle Scholar
  11. 11.
    R. A. Frye and R. W. Holz, The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells, J. Neurochem. 43:146 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Hotchkiss, H. B. Pollard, J. Scott and J. Axelrod, Release of arachidonic acid from adrenal chromaffin cell cultures during secretion of epinephrine, Fed. Proc. 40:256 (1981).Google Scholar
  13. 13.
    K. Hong, N. Duzgunes, and D. Papahadjopoulos, Modulation of membrane fusion by calcium binding proteins, Biophys. J. 37:297 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    D. E. Knight and N. T. Kestenen, Evoked transient intracellular free Ca++ changes and secretion in isolated bovine adrenal medullary cells, Proc. R. Soc. Lond. B. 219:177 (1983).CrossRefGoogle Scholar
  15. 15.
    K. Morita, K. W. Brocklehurst, S. M. Tomares, and H. B. Pollard, The phorbol ester TPA enhances A23l87-but not carbachol or high K+-induced catecholamine secretion from cultured bovine adrenal chromaffin cells, Biochem. Biophys. Res. Commun. 129:511 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    J. M. Lord and S. J. H. Ashcroft, Identification and characterization of Ca2+-phospholipid-dependent protein kinase in rat islets and hamster B-cells, Biochem. J. 219:547 (1984).PubMedGoogle Scholar
  17. 17.
    W. F. Odenwald and S. J. Morris, Identification of a second synexin-like adrenal medullary and liver protein that enhances calcium-induced membrane aggregation, Biochem. Biophys. Res. Commun. 112:147 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    H. B. Pollard, J. H. Scott, and C. E. Creutz, Inhibition of synexin activity and exocytosis from chromaffin cells by phenothiazine drugs, Biochem. Biophys. Res. Commun. 113:908 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    H. B. Pollard, C. E. Creutz, V. M. Fowler, J. H. Scott, and C. J. Pazoles, Calcium-dependent regulation of chromaffin granule movement, membrane contact, and fusion during exocytosis, Cold Spring Harbor Symp. Quant. Biol. 46:819 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    H. B. Pollard and J. H. Scott, Synhibin: a new calcium dependent membrane binding protein that inhibits synexin-induced chromaffin granule aggregation and fusion, FEBS Lett. 150:201 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    H. B. Pollard, R. Ornberg, M. Levine, E. Heldman, K. Morita, P. Lelkes, and J. Heldman, Ultrastructural and biochemical aspects of biosynthesis and secretion of hormones, in: “Endocrinology,” F. Labrie and L. Pronix, ed., Elsevier, Amsterdam, pp. 383–386 (1984).Google Scholar
  22. 22.
    S. M. Simon and R. R. Llinas, Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release, Biophys. J. 48:485 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Stutzin, A fluorescence assay for monitoring and analyzing fusion of biological membrane vesicles in vitro, FEBS Lett. 197:274 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    T. C. Sudhof, J. H. Walker, and J. Obrocki, Calelectrin self-aggregates and promotes membrane aggregation in the presence of calcium, EMBO J. 1:1167 (1982).PubMedGoogle Scholar
  25. 25.
    T. C. Sudhof, M. Ebbecke, J. H. Walker, U. Fritsche, and C. Bonstead, Isolation of mammalian calelectrins: a new class of ubiguitous Ca2+-regulation proteins, Biochemistry 23:1103 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    K. E. Sussman, H. B. Pollard, J. W. Leitner, R. Nesher, J. Adler, and E. Cerasi, Differential control of insulin secretion and somatostatin receptor recruitment in isolated islets, Biochem. J. 214:225 (1983).PubMedGoogle Scholar
  27. 27.
    J. H. Walker, Isolation from cholinergic synapses of a protein that binds to membranes in a calcium dependent manner, J. Neurochem. 39:815 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    S. P. Wilson and N. Kirshner, Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. J. Biol. Chem. 258:4994 (1983).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H. B. Pollard
    • 1
  • K. W. Brocklehurst
    • 1
  • E. J. Forsberg
    • 1
  • A. Stutzin
    • 1
  • G. Lee
    • 1
  • A. L. Burns
    • 1
  1. 1.Laboratory of Cell Biology, NIADDKNational Institutes of HealthBethesdaUSA

Personalised recommendations