Glucose-Evoked Changes in [K+] and [Ca2+] in the Intercellular Spaces of the Mouse Islet of Langerhans

  • E. Perez-Armendariz
  • I. Atwater
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 211)


Microelectrode studies of the glucose-evoked burst pattern of electrical activity in pancreatic β-cells have indicated that the underlying mechanism involves the cyclic activation of K-channels.4,5,9,11,32 Furthermore, it is well documented that the action potentials during the bursts result from the activation of two voltage-gated membrane channels, Ca-channels7,8,25,31,34 and K-channels.


Apparent Diffusion Coefficient Electrical Activity Active Phase Intercellular Space Spike Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Ashcroft, D. E. Harrison, and S. J. H. Ashcroft, Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells, Nature 312:446 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    I. Atwater, Control mechanisms for glucose induced changes in the membrane potential of mouse pancreatic β-cell, Cienc. Biol. (Portugal) 5:299 (1980).Google Scholar
  3. 3.
    I. Atwater and P. M. Beigelman, Dynamic characteristics of electrical activity in pancreatic β-cells. Effects of calcium and magnesium removal, J. Physiol. (Paris) 72:769 (1976).Google Scholar
  4. 4.
    I. Atwater, C. M. Dawson, B. Ribalet, and E. Rojas, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β-cell, J. Physiol. 288:575 (1979).PubMedGoogle Scholar
  5. 5.
    I. Atwater, C. M. Dawson, A. Scott, G. Eddlestone, and E. Rojas, The nature of the oscillatory behaviour in electrical activity from pancreatic β-cell, J. Horm. Metab. Res. (suppl) 10:100 (1980).Google Scholar
  6. 6.
    I. Atwater, A. Goncalves, A. Herchuelz, P. Lebrun, W. J. Malaisse, E. Rojas, and A. Scott, Cooling dissociates glucose-induced insulin release from electrical activity and cationic fluxes in pancreatic islets, J. Physiol. 348:615 (1984).PubMedGoogle Scholar
  7. 7.
    I. Atwater, B. Ribalet, and E. Rojas, Cyclic changes in potential and resistance of the β-cell membrane induced by glucose in islets of Langerhans from mouse, J. Physiol. 278:117 (1978).PubMedGoogle Scholar
  8. 8.
    I. Atwater, B. Ribalet, and E. Rojas, Mouse pancreatic β-cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization, J. Physiol. 288:561 (1979).PubMedGoogle Scholar
  9. 9.
    I. Atwater, L. Rosario, and E. Rojas, Properties of the Ca-activated K-channel in pancreatic β-cells, Cell Calcium 4:451 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Crank, The mathematics of diffusion, Clarendon Press, Oxford (1956).Google Scholar
  11. 11.
    D. L. Z. Cook and C. N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic β-cells, Nature 311:271 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    C. M. Dawson, P. C. Croghan, I. Atwater, and E. Rojas, Estimation of potassium permeability in mouse islets of Langerhans, Biomedical Research 4:389 (1983).Google Scholar
  13. 13.
    P.M. Dean, Ultrastructural morphometry of the pancreatic β-cell, Diabetologia 9:115 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    K. P. Dresdner and R. P. Kline, Extracellular calcium ion depletion in frog cardiac ventricular muscle, Biophys. J. 48:33 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    G. T. Eddlestone, A. Goncalves, J. A. Bangham, and E. Rojas, Electrical coupling between β-cells in islets of Langerhans from mouse, J. Mem. Biol. 77:1 (1984).CrossRefGoogle Scholar
  16. 16.
    R. Ferrer, B. Soria, C. M. Dawson, I. Atwater, and E. Rojas, Effects of Zn2+ on glucose-induced electrical activity and insulin release from mouse pancreatic islets, Amer. J. Physiol. 246:C520 (1984).PubMedGoogle Scholar
  17. 17.
    B. Frankenhaeuser and A. L. Hodgkin, The after-effects of impulses in the giant nerve fibres of Loligo, J. Physiol. 131:341 (1956).PubMedGoogle Scholar
  18. 18.
    D. E. Goldman, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27:37 (1943).PubMedCrossRefGoogle Scholar
  19. 19.
    J. C. Henquin, D-glucose inhibits potassium efflux from pancreatic islet cells, Nature 271:271 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    A. L. Hodgkin and B. Katz, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. 108:37 (1949).PubMedGoogle Scholar
  21. 21.
    K. H. Kilb and R. Stampfli, A new stopcock for pharmacological purposes, Naunyn-Schmiedeberg’s Archive Pharmacology 285:293 (1974).CrossRefGoogle Scholar
  22. 22.
    E. Kohen, C. Kohen, B. Thorell, D. H. Mintz, and A. Rabinovitch, Intercellular communication in pancreatic islet monolayer cultures: a microfluorometric study, Science 204:862 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Kawazu, A. C. Boschero, C. Delcroix and W. J. Malaisse, The stimulus-secretion coupling of glucose-induced insulin release. XXVII Effect of glucose on Na+ fluxes in isolated islets, Pflugers Arch. 375:197 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    W. Loewenstein, Junctional intercellular communication: the cell-to-cell membrane channel, Physiological Reviews 61:829 (1981).PubMedGoogle Scholar
  25. 25.
    E. K. Matthews and Y. Sakamoto, Electrical characteristics of pancreatic islet cells, J. Physiol. 246:421 (1975).PubMedGoogle Scholar
  26. 26.
    P. Meda, I. Atwater, A. Goncalves, A. Bangham, L. Orci, and E. Rojas, The topography of electrical synchrony among β-cells in the mouse islet of Langerhans, Quart. J. Exp. Physiol. 69:719 (1984).Google Scholar
  27. 27.
    P. Meda, A. Perrelet, and L. Orci, Increase of gap junctions between pancreatic β-cells during stimulation of insulin secretion, J. Cell Biol. 82:441 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Meda, J. F. Denef, A. Perrelet and L. Orci, Nonrandom distribution of gap junctions between pancreatic β-cells, Am. J. Physiol. 238:C114 (1980).PubMedGoogle Scholar
  29. 29.
    L. Orci, R. H. Unger, and A. E. Renold, Structural coupling between pancreatic islet cells, Experimentia 29:1015 (1973).CrossRefGoogle Scholar
  30. 30.
    E. Perez-Armendariz, I. Atwater, and E. Rojas, Glucose-induced oscillatory changes in extracellular ionized potassium concentration in mouse islets of Langerhans, Biophys. J. 48:741 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    B. Ribalet and P. Beigelman, Calcium action potentials and potassium permeability activation in pancreatic β-cells, Am. J. Physiol. 239:C124 (1980).PubMedGoogle Scholar
  32. 32.
    L. M. Rosario and E. Rojas, Potassium channel selectivity in mouse pancreatic β-cells, Am. J. Physiol. 250:C90 (1986).PubMedGoogle Scholar
  33. 33.
    P. A. Rutecki, F. J. Lebeda, and D. Johnston, Epileptiform activity induced by changes in extracellular potassium in hippocampus, J. Neurophysiol. 54:1363 (1985).PubMedGoogle Scholar
  34. 34.
    L. S. Satin and D. L. Cook, Voltage-gated Ca current in pancreatic islet β-cells, Pflugers Arch. 404:385 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    E. Sykoba, Extracellular K+ accumulation in the central nervous system, Prog. Biophys. Mol. Biol. 42:135 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • E. Perez-Armendariz
    • 1
  • I. Atwater
    • 1
  1. 1.Laboratory of Cell Biology and Genetics, NIDDKNational Institutes of HealthBethesdaUSA

Personalised recommendations