Advertisement

Optical Detection of Calcium Dependent ATP Release from Stimulated Medullary Chromaffin Cells

  • E. Rojas
  • E. Forsberg
  • H. B. Pollard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 211)

Abstract

It is well known that different types of secretory granules contain adenosine-5′-triphosphate (ATP) in addition to the specific hormones and neurotransmitters. Examples include secretory granules from chromaffin cells,32 pancreatic B-cells,27 platelets4,5,30 and mast cells. We have recently shown22 that it is possible to obtain real-time measurements of the kinetics of secretion of vesicle contents by monitoring ATP release from stimulated medullary chromaffin cells using luciferin-luciferase.

Keywords

Muscarinic Receptor Secretory Granule Chromaffin Cell Inositol Phosphate Krebs Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. L. Anderson and C. F. Stevens, Voltage Clamp analysis of acetylcholine produced end-plate current fluctuations of frog neuromuscular junction, J. Physiol 235:655 (1973).PubMedGoogle Scholar
  2. 2.
    W. H. Biggley, J. E. Lloyd, and H. H. Seliger, The spectral distribution of firefly light II, J. Gen. Physiol. 50:1681 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    J. H. Brown and S. Brown-Masters, Does phosphoinositide hydrolysis mediate inhibitory as well as excitatory muscarinic receptors? Trends Pharmacol. Sci. 5:417 (1984).CrossRefGoogle Scholar
  4. 4.
    G. V. R. Born, Changes in the distribution of phosphorous in platelet-rich plasma during clotting, Biochem. J. 68:695 (1958).PubMedGoogle Scholar
  5. 5.
    C. F. Code, Histamine in blood, Physiol. Rev. 32:47 (1952).PubMedGoogle Scholar
  6. 6.
    M. J. Cormier, J. E. Wampler, and K. Hori, Bioluminescence: chemical aspects, Fortschr. Cem. Org. Naturst. 30:1 (1973).CrossRefGoogle Scholar
  7. 7.
    W. W. Douglas, Stimulus-secretion coupling: the concept and clues from chromaffin and other cells, Br. J. Pharmacol. 34:451 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    W. W. Douglas and R. P. Rubin, The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. 159:40 (1961).PubMedGoogle Scholar
  9. 9.
    L. A. Dunn and R. W. Holz, Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells, J. Biol. Chem. 258:4989 (1983).PubMedGoogle Scholar
  10. 10.
    M. Eley, J. Lee, J. M. Lhoste, C. Y. Lee, M. J. Cormier, and P. Hemmerich., Bacterial bioluminescence, comparisons of bioluminescence emission spectra, the fluorescence of luciferase reaction mixture and the fluorescence of flavin cations, (1970).Google Scholar
  11. 11.
    E. J. Forsberg, E. Rojas, and H. B. Pollard, Receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells, J. Biol. Chem. 261:4915 (1986).PubMedGoogle Scholar
  12. 12.
    A. G. Carcia, F. Sala, J. A. Reig, S. Viniegra, J. Frias, R. Fonteriz, and L. Gandia, Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels, Nature 309:69 (1984).CrossRefGoogle Scholar
  13. 13.
    A. Greenberg and O. Zinder, Control of catecholamine secretion from isolated adrenal medullat cells, Cell Tissue Res. 226:655 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    H. D. Griffin, J. N. Hawthorne, and M. Sykes, A calcium requirement for the phosphatidyl inositol response following activation of presynaptic muscarinic receptors, Biochemical Pharmacology 28:1143 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Hagiwara and L. Byerly, Calcium channel, Ann. Rev. Neurosci. 4:69 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Kidokoro and A. K. Ritchie, Chromaffin cell action potentials and thier possible role in adrenaline secretion from rat adrenal medulla, J. Physiol. 307:199 (1980).PubMedGoogle Scholar
  17. 17.
    D. E. Knight and P. F. Baker, Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields, J. Membrane Biol. 68:107 (1982).CrossRefGoogle Scholar
  18. 18.
    S. B. Masters, T. K. Harden, and J. H. Brown, Relationships between phosphoinositide and calcium responses to muscarinic agonists in Astrocytoma cells, Molecular Pharmacology 26:149 (1984).PubMedGoogle Scholar
  19. 19.
    E. Neher and C. Stevens, Conductance fluctuations and ionic pores in membranes, Ann. Rev. Biophys. Bioeng. 6:345 (1977).CrossRefGoogle Scholar
  20. 20.
    W. G. Nayler and J. D. Horowitz, Calcium antagonists: a new class of drugs, Pharmac. Ther. 20:203 (1983).Google Scholar
  21. 21.
    M. Oka, M. Isosaki, and J. Watanabe, Calcium flux and catecholamine release in isolated bovine adrenal medullary cells: effects of nicotinic and muscarinic stimulation, in: “Synthesis, storage and secretion of adrenal catecholamines,” Advances in the Biosciences 36:29 (1980).Google Scholar
  22. 22.
    E. Rojas, H. B. Pollard, and Heldman A, Real-time measurements of acetylcholine-induced release of ATP from bovine medullary chromaffin cells, FEBS Lett. 185:323 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    E. Rojas, H. B. Pollard, and E. Forsberg, Optical detection of acetylcholine-evoked, calcium dependent ATP release from medullary chromaffin cells, Biophys. J. (submitted, 1986A).Google Scholar
  24. 24.
    E. Rojas, E. Forsberg, and H. B. Pollard, Muscarinic receptor activation potentiates nicotine-evoked ATP release from medullary chromaffin cells, FEBS Lett. (submitted, 1986B).Google Scholar
  25. 25.
    E. Rojas, A. Stutzin, H. B. Pollard, Microscopic characteristics of the acetylcholine-evoked ATP release from medullary chromaffin cells, Biophys. J. (submitted, 1986C).Google Scholar
  26. 26.
    F.J. Sigworth, Nonstationary noise analysis of membrane current, in: “Membrane, channels and noise,” R. S. Eisenberg, M. Grank, and C. F. Stevens, ed., Plenum Press, N.Y. and London, p. 21 (1984).CrossRefGoogle Scholar
  27. 27.
    K. E. Sussman and J. W. Leitner, Conversion of ATP into other adenine nucleotides within isolated islet secretory vesicles. Effect of cyclic AMP on phosphorous translocation, Endocrinology 101:694 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Ungar and J. H. Phillips, Regulation of the adrenal medulla, Physiol. Revs. 63:787 (1983).Google Scholar
  29. 29.
    B. Uvnas, The molecular basis for the storage and release of histamine in rat mast cell granules, Life Sci. 14:2355 (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Weil-Malherbe and A. D. Bone, The association of adrenaline and noradrenaline with blood platelets, Biochem. J. 70:14 (1958).PubMedGoogle Scholar
  31. 31.
    S. P. Wilson and N. Kirshner, Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells, J. Biol. Chem. 258:5994 (1983).Google Scholar
  32. 32.
    H. Winkler and E. Westhead, The molecular organization of adrenal chromaffin granules, Neuroscience 5:1803 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    U. Zimmermann, G. Pilwat, and F. Riemann, Dielectric breakdown of cell membranes, Biophys. J. 14:881 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • E. Rojas
    • 1
  • E. Forsberg
    • 1
  • H. B. Pollard
    • 1
  1. 1.Laboratory of Cell Biology and Genetics, NIDDKNational Institutes of HealthBethesdaUSA

Personalised recommendations