Single K-Channel Activity in Fish Islet Cells

  • R. M. Santos
  • H. Finol
  • E. Rojas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 211)


The development of the patch-clamp technique, nearly ten years ago, allowed electrical measurements to be made under voltage-clamp conditions on small cells unsuitable for two microeletrodes voltage-clamp techniques (see[14]).


Rainbow Trout Islet Cell Pancreatic Polypeptide Pancreatic Islet Cell Granule Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Ashcroft, D. E. Harrison, and S. J. H. Ashcroft, Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells, Nature 312:446 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    I. Atwater, A. Goncalves, A. Herchuelz, P. Lebrun, W. J. Malaisse, E. Rojas, and A. Scott, Cooling dissociates glucose-induced insulin release from electrical activity and cationic fluxes in pancreatic islets, J. Physiol. 348:615 (1984).PubMedGoogle Scholar
  3. 3.
    I. Atwater, L. M. Rosario, and E. Rojas, Properties of the Ca-activated K-channel in pancreatic β-cells. Cell Calcium 4:451 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    J. N. Barrett, K. L. Magleby, and B. S. Pallotta, Properties of single calcium-activated potassium channels in cultured rat muscle, J. Physiol. 331:211 (1982).PubMedGoogle Scholar
  5. 5.
    D. Colguhoun and A. G. Hawkes, The principles of the stochastic interpretation of ion-channel mechanisms, in: “Single-Channel Recording,” B. Sakmann and E. Neher, ed., Plenum Press, N.Y. and London, pp. 135–176 (1983).CrossRefGoogle Scholar
  6. 6.
    D. L. Cook and C. N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic β-cells, Nature 311:271 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    D. L. Cook, M. Ikeuchi, and W. Y. Fujimoto, Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic β-cells, Nature 311:269 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    L. J. DeFelice and J. R. Clay, Membrane current and membrane potential from single-channel kinetics, in: “Single-Channel Recording,” B. Sakmann and E. Neher, ed., Plenum Press, N.Y. and London, p. 323 (1983).CrossRefGoogle Scholar
  9. 9.
    G. T. Eddlestone, A. Goncalves, J. A. Bagham, and E. Rojas, Electrical coupling between cells in islets of Langerhans from mouse, J. Membrane Biol. 77:1 (1984).CrossRefGoogle Scholar
  10. 10.
    G. T. Eddlestone and E. Rojas, Evidence of electrical coupling between mouse pancreatic β-cells, J. Physiol. 303: 76P (1980).Google Scholar
  11. 11.
    S. Falkmer and B. Hellman, Identification of the cells in the endocrine pancreatic tissue of the marine teleost Cottus scorpius by some silver impregnation procedures, Acta Morpholoqica Neerlando-Scandinavica 4:145 (1961).Google Scholar
  12. 12.
    I. Findlay, M. J. Dunne, and O. H. Petersen, High-conductance K+ channel in pancreatic islet cells can be activated and inactivated by internal calcium, J. Membrane Biol. 83:169 (1985).CrossRefGoogle Scholar
  13. 13.
    I. Findlay, M. J. Dunne, and O. H. Petersen, ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells, J. Membrane Biol. 88:165 (1985).CrossRefGoogle Scholar
  14. 14.
    O. P. Hammill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membranes patches, Pflugers Arch. 391:85 (1981).CrossRefGoogle Scholar
  15. 15.
    C. Klein and R. H. Lange, Principal cell types in the pancreatic islet of a teleost fish, Xiphophorus helleri H., Cell Tiss. Res. 176:529 (1977).Google Scholar
  16. 16.
    C. Klein and S. Van Noorden, Pancreatic polypeptide (PP)-and glucagon cells in the pancreatic islet of Xiphophorus helleri H. (teleostei), Cell. Tiss. Res. 205:187 (1980).Google Scholar
  17. 17.
    K. Kobayashi, S. Shibasaki, and Y. Takahashi, Light and electron microscopic study on the endocrine cells of the pancreas in a marine teleost, Fugu rubripes rubripes, Cell Tiss. Res. 174:161 (1976).Google Scholar
  18. 18.
    K. Kobayashi and Y. Takahashi, Light and electron microscope observations on the islets of Langerhans in Carassius carassius longsdorfii, Arch. Histol. Jap. 31:433 (1970).PubMedCrossRefGoogle Scholar
  19. 19.
    R. H. Lange and C. Klein, Rhombic dodecahedral secretory granules in glucagon producing islet cells, Cell Tiss. Res. 148:561 (1974).Google Scholar
  20. 20.
    F. Malaisse-Lagae, A. Sener, P. Lebrun, A. Herchuelz, V. Leclercq-Meyer, and W. J. Malaisse, Reponse secretoire, ionique et metabolique des ilots de Langerhans aux anomeres du D-mannose, C.R. Hebd. Seanc. Acad. Sci., Paris 294:605 (1982).Google Scholar
  21. 21.
    A. Marty and E. Neher, Ionic channels in cultured rat pancreatic islet cells, J. Physiol. 326:36P (1982).Google Scholar
  22. 22.
    P. Meda, I. Atwater, A. Goncalves, A. Bangham, L. Orci, and E. Rojas, The topology of electrical synchrony among β-cells in the mouse islet of Langerhans, Quart. J. Exp. Physiol. 69:719 (1984).Google Scholar
  23. 23.
    P. Meda, R. M. Santos, and I Atwater, Direct identification of electrophysiological-monitored cells within intact mouse islets of Langerhans, Diabetes 35:232 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    R. L. Michaels and J. D. Sheridan, Islets of Langerhans: dye coupling among immunocytochemical distinct cell types, Science 214:801 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Nakamura, M. Yokote, Ultrastructural studies on the islets of Langerhans of the carp, Z. Anat. Entwicki.-Gesch. 134:61 (1971).CrossRefGoogle Scholar
  26. 26.
    R. M. Santos, Modulation of glucose-induced electrical activity by second messengers in mouse pancreatic β-cells, Ph.D.Thesis Department of Biophysics, School of Biological Sciences. University of East Anglia Norwich, U.K. (1985).Google Scholar
  27. 27.
    Y. Stefan and S. Falkmer, Identification of four endocrine cell types in the pancreas of Cottus scorpius (Teleostei) by immunofluorescence and electron microscopy, Gen. Comp. Endocrinol. 42:171 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    N. W. Thomas, Morphology of endocrine cells in the islet tissue of the cod Gadus callarias, Acta Endocrinol. 63:679 (1970).PubMedGoogle Scholar
  29. 29.
    N. W. Thomas, Observations on the cell types present in the Principal islet of the Dab Limanda limanda, Gen. Comp. Endocrinol. 26:496 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    G. F. Wagner and B. A. Mckeown, Immunocytochemical localization of hormone-producing cells within the pancreatic islets of the rainbow trout (Salmo gairdneri), Cell Tiss. Res. 221:181 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. M. Santos
    • 1
  • H. Finol
    • 2
  • E. Rojas
    • 1
  1. 1.Laboratory of Cell Biology and Genetics, NIDDKNational Institutes of HealthBethesdaUSA
  2. 2.Escuela de BiologiaUniversidad Central de VenezuelaApartado, CaracasVenezuela

Personalised recommendations