New Views of Cell and Tissue Cytoarchitecture: Embedment-Free Electron Microscopy and Biochemical Analysis

  • Edward G. Fey
  • Sheldon Penman
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 127)


Our perception of the cell interior is undergoing a fundamental change. What once appeared to be formless plasms are now seen to contain highly organized structural scaffolds. Even the soluble proteins, those not a part of skeletal structures, are no longer considered free, but associated with the skeletal framework. The implications of these studies of cell structure are beginning to emerge. The end result will likely be a change in many of the paradigms of our science. As with most changes in paradigm, progress is halting and not without conflict.


Nuclear Matrice Transmission Electron Micrographs Nuclear Matrix Madin Darby Canine Kidney Madin Darby Canine Kidney Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. F., 1951, Techniques for the preservation of three- dimensional structure in preparing specimens for the electron microscope, Trans, N.Y., Acad. Sci., Ser., J., 13:130.Google Scholar
  2. Ben-Zefev, A., Duerr, A., Solomon, F. and Penman, S., 1979, The outer boundary of the cytoskeleton: A lamina derived from plasma membrane proteins, Cell 17: 859.CrossRefGoogle Scholar
  3. Capco, D. G., Krochmalnic, G. and Penman, S., 1984, A new method of preparing embedment-free sections for transmission electron microscopy: Applications to the cytoskeletal framework and other three-dimensional networks, J. Cell Biol., 98:1878.PubMedCrossRefGoogle Scholar
  4. Capco, D. G., Wan, K. M. and Penman, S., 1982, The nuclear matrix: Three-dimensional architecture and protein composition, Cell, 29:847.PubMedCrossRefGoogle Scholar
  5. Fey, E. G. and Penman, S., 1984, Tumor promoters induce a specific morphological signature in the nuclear matrix-intermediate filament scaffold of Madin-Darby canine kidney (MDCK) cell colonies, Proc. Natl. Acad. Sci. USA., 81:4409.PubMedCrossRefGoogle Scholar
  6. Fey, E. G., Wan, K. M. and Penman, S., 1984, Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: Three- dimensional organization and protein composition, J. Cell Biol., 98:1973.PubMedCrossRefGoogle Scholar
  7. Fulton, A. B., Wan, K. M. and Penman, S., 1980, The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework, Cell, 20:849.PubMedCrossRefGoogle Scholar
  8. Guatelli, J. C., Porter, K. R., Anderson, K. L. and Boggs, D. P., 1982, Ultrastructure of the cytoplasmic and nuclear matrices of human lymphocytes observed using high voltage electron microscopy of embedment-free sections, Biol. Cell, 43:69.Google Scholar
  9. Herman, R., Weymouth, L. and Penman, S., 1978, Heterogeneous nuclear RNA- protein fibers in chromatin depeleted nuclei, J. Cell Biol., 78:663.PubMedCrossRefGoogle Scholar
  10. Lenk, R. L., Ransom, Y., Kaufmann, Y. and Penman, S., 1977, A cytoskeletal structure with associated polyribosomes obtained from HeLa cells, Cell, 10:67.PubMedCrossRefGoogle Scholar
  11. Madin, S. A. and Darby, N. A, 1975, American Type Collection Catalogue of Strains II. First edition. American Type Culture Collection, Rockville, MD.Google Scholar
  12. McRoberts, J. A., Taub, M. and Saier, M. H., 1981, The Madin Darby canine kidney (MDCK) cell line, In: Functionally Differentiated Cell Lines, G. Sato, ed., Alan R. Liss, New York.Google Scholar
  13. Meek, G. A., 1976, Practical Electron Microscopy for Biologists, Wiley, New York.Google Scholar
  14. Penman, S., Capco, D. G., Fey, E. G., Chatterjee, P., Reiter, T., Ermisch, A., and Wan, K. M., 1983, The three-dimensional structural networks of the cytoplasm and nucleus, In: Spatial Organization of Eukaryotic Cells, J. R. MoIntosh, ed., Alan R. Liss, Inc., New York.Google Scholar
  15. Shalla, T. A., Carroll, T. W., DeZoeten, G. A., 1964, Penetration of stain into ultra thin sections of tobacco mosaic virus, Stain Technol., 39:257.PubMedGoogle Scholar
  16. Wolosewick, J., 1980, The application of polyethylene glycol to electron microscopy, J. Cell Biol., 86:675.PubMedCrossRefGoogle Scholar
  17. Wolosewick, J. J. and Porter, K. R., 1976, Stereo high-voltage electron microscopy of whole cells of the human diploid line WI-38, Am. J. Anat., 147:303.PubMedCrossRefGoogle Scholar
  18. Wolosewick, J. J. and Porter, K. R., 1979, Micro trabecular lattice of the ground cytoplasmic substance: artifact or reality, J. Cell Biol., 82:114PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Edward G. Fey
    • 1
  • Sheldon Penman
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations