Cytosociological Aspects of Enzyme Action

  • G. Rickey Welch
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 127)


The scope of this Workshop has shown us something of the breadth of existing knowledge, regarding the metabolic infrastructure of the living cell. Over the years, many of us in attendance have been admonished and rebuked for advancing the kinds of concepts and principles at issue here. For, the opponents have argued, the marriage of cell biology and enzymology attained a consummate finality long ago — during the early days of differential centrifugation. The fruit of this early marriage has been a reductionistic period largely dominated by the “grind-and- find” study of isolated enzyme activities. According to this “classical” view, the organization of cell metabolism exhibits a simple bifurcation: whereas a certain (reproducible) fraction of the cellular enzyme constituency appears to be rather permanently associated in (or on) specific membranous elements (e.g., as “marker enzymes”), the majority of the enzymes of intermediary metabolism are homogeneously dissolved in the cytosol (i.e., the 100,000xg supernatant) or in the “plasm” of organelles (e.g., mitochondrion). Sadly to say, this picture continues to be promulgated in present-day biochemistry textbooks — which treat enzyme organization only as a passing fancy.


Enzyme Molecule Configurational Entropy Medium Viscosity Intermediary Metabolite Catalytic Turnover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertsson, P.A., 1978, Trends Biochem. Sci., 3: N37.Google Scholar
  2. Bernard, C., 1878, “Leçons sur les Phénomènes de la Vie communs aux Animaux et aux Végétaux”, translated from the French by H.E. Hoff, R. Guillemin, and L. Guillemin, (Charles C. Thomas Publisher, Springfield, Illinois, 1974).Google Scholar
  3. Booth, F., 1950, Proc. Rov. Soc. Lond. A. 203: 533.CrossRefGoogle Scholar
  4. Chandler, D., 1978, Ann. Rev. Phvs. Chem. 29: 441.CrossRefGoogle Scholar
  5. Clegg, J.S., 1984, Amer. J. Physiol., 246: R133.PubMedGoogle Scholar
  6. Eigen, M., 1974, in: “Quantum Statistical Mechanics in the Natural Sciences”, B. Kursunoglu, S.L. Mintz, and S.M. Widmayer, eds., Plenum, New York.Google Scholar
  7. Fersht, A., 1985, “Enzyme Structure and Mechanism” (2nd ed.), Freeman, San Francisco.Google Scholar
  8. Hagler, A.T. and Moult, J., 1978, Nature (Lond.) 272: 222.CrossRefGoogle Scholar
  9. Heinrich, R., Rapoport, S.M., and Rapoport, T.A., 1977, Prog. Biophys. Mol. Biol. 32: 1.PubMedCrossRefGoogle Scholar
  10. Jones, M.N., 1975, “Biological Interfaces”, Elsevier, New York.Google Scholar
  11. Kacser, H. and Burns, J.H., 1979, Biochem. Soc. Trans. 7: 1149.PubMedGoogle Scholar
  12. Keleti, T. and Welch, G.R., 1984, Biochem. J.. 223: 299.PubMedGoogle Scholar
  13. McConkey, E.H., 1982, Proc. Nat. Acad. Sci. USA, 79: 3236.PubMedCrossRefGoogle Scholar
  14. Monod, J., Wyman, J., and Changeux, J.P., 1965, J. Mol. Biol. 12: 88.PubMedCrossRefGoogle Scholar
  15. Munkres, K.D. and Woodward, D.O., 1966, Proc. Nat. Acad. Sci. USA., 55: 1217.PubMedCrossRefGoogle Scholar
  16. Ortoleva, P. and Ross, J., 1975, Adv. Chem. Phys., 29: 49.CrossRefGoogle Scholar
  17. Ottaway, J.H., 1984, BioEssays, 1: 283.CrossRefGoogle Scholar
  18. Rashevsky, N., 1973, In: “Foundations of Mathematical Biology”, Vol. 3, R. Rosen, ed., Academic Press, New York.Google Scholar
  19. Sitte, P., 1980, in: “Cell Compartmentation and Metabolie Channelling“, L. Nover, F. Lynen, and K. Mothes, eds., Elsevier, New York.Google Scholar
  20. Somogyi, B., Welch, G.R., and Damjanovich, S., 1984, Biochem. Biophys. Acta., 768: 81.PubMedGoogle Scholar
  21. Somogyi, B., Rosenberg, A., Welch, G.R., and Damjanovich, S., 1987, in: “Towards A Cellular Enzymology”, A. Klyosov, S. Varfolomeev, and G.R. Welch, eds., Plenum, New York.Google Scholar
  22. Srere, P.A., 1984, Trends Biochem. Sci., 9: 387.CrossRefGoogle Scholar
  23. Srere, P.A., 1985, in: “Organized Multienzyme Systems”, G.R. Welch, ed., Academic, New York.Google Scholar
  24. Welch, G.R., 1977a, Prog. Biophys. Mol. Biol. 32: 103.PubMedCrossRefGoogle Scholar
  25. Welch, G.R., 1977b, J. Theor, Biol., 68: 267.CrossRefGoogle Scholar
  26. Welch, G.R., 1984, In: “Dynamics of Biochemical Systems”, J. Ricard and A. Cornish-Bowden, eds., Plenum, New York.Google Scholar
  27. Welch, G.R., 1985, J. Theor. Biol. 114: 433.PubMedCrossRefGoogle Scholar
  28. Welch, G.R., ed., 1986, “The Fluctuating Enzyme”, Wiley, New York.Google Scholar
  29. Welch, G.R. and Berry, M.N., 1983, in: “Coherent Excitations in Biological Systems”, H. Fröhlich and F. Kremer, eds., Springer-Verlag, New York.Google Scholar
  30. Welch, G.R. and Keleti, T., 1981, J. Theor. Biol. 93: 701.PubMedCrossRefGoogle Scholar
  31. Welch, G.R. and Kell, D.B., 1986, in: “The Fluctuating Enzyme”, G.R. Welch, ed., Wiley, New York.Google Scholar
  32. Welch, G.R., Somogyi, B., and Damjanovich, S., 1982, Prog. Biophys. Mol. Biol. 39: 109.PubMedCrossRefGoogle Scholar
  33. Welch, G.R., Somogyi, B., Matko, J., and Papp, S., 1983, J. Theor. Biol. 100: 211.PubMedCrossRefGoogle Scholar
  34. Wilson, E.Q., 1975, “Sociobiology: The New Synthesis”, Harvard University Press, Cambridge, MassachusettsGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. Rickey Welch
    • 1
  1. 1.Department of Biological SciencesUniversity of New OrleansNew OrleansUSA

Personalised recommendations