Organization and Control of Energy Metabolism in Anaerobic Microorganisms

  • Douglas B. Kell
  • Robert P. Walter
Part of the NATO ASI Series book series (NSSA, volume 127)


A recurrent question, which dates from the very origins of modern biochemistry itself (see Schlenk, 1985), and which constitutes a major theme of the present conference, concerns the degree of relatedness between the organization and activities of the enzymes of cellular energy metabolism in vivo and their behavior in vitro. At one level, two extreme types of viewpoint, which we may refer to as “holistic” and “reductionist”, may be discerned.


Energy Coupling Energy Transduction Glycolytic Intermediate Submitochondrial Particle Clostridium Pasteurianum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baum, H., 1978, Coupling between the charge-separating devices of the mitochondrion: intra- or extramembrane? in: “The Molecular Biology of Membranes”, S Fleischer, Y. Hatefi, D.H. MacLennan and A. Tzagoloff, eds., Plenum Press, New York.Google Scholar
  2. Baum, H., Hall, G. S., Nalder, J. and Beechey, R B., 1971, On the mechanism of oxidative phosphorylation in submitochondrial particles, in: “Energy Transduction in Respiration and Photosynthesis”, E. Quaglieriello, S Papa and C. S. Rossi, eds., Adriatica Editrice, Bari.Google Scholar
  3. Berden, J. A., Herweijer, M. A. and Cornelisson, J. B. J. W., 1984, ATP synthase and energy coupling, la: “H+-ATPase (ATP synthase): Structure, Function, Biogenesis of the F0F1 complex of coupling membranes”, S. Papa, K. Aitendorf, L. Eraster, and L. Packer, eds., Adriatica Editrice, Bari.Google Scholar
  4. Berry, M. N., Grivell, A. R. and Wallace, P. G., 1985, Electrochemical aspects of metabolism, Compr. Treatise of Electrochem., 10:347.CrossRefGoogle Scholar
  5. Bohm, D., 1981, “Wholeness and the Implicate Order”, Routledge and Kegan Paul, London.Google Scholar
  6. Booth, L R. and Morris, J. G., 1982, Carbohydrate transport in Clostridium pasteurianum. Biosci. Rep., 2:47.PubMedCrossRefGoogle Scholar
  7. Clarke, D J., Morley, C. D., Kell, D B. and Morris, J. G., 1982, On the mode of action of the bacteriocin butyricin 7423, Eur..J. , Biochem., 127:105.CrossRefGoogle Scholar
  8. Clegg, J. S, 1984, Properties and metabolism of the aqueous cytoplasm and its boundaries, Amer. J. Physiol., 246: R133.Google Scholar
  9. Cotton, N. P. J. and Jackson, J. B, 1983, Titrations of ATP synthesis with uncoupling agents do not provide evidence of localized high energy intermediates in electron transport phosphorylation in bacterial chromatophores, FEBS Lett., 161:93.CrossRefGoogle Scholar
  10. Davenport, J. W., 1985, Double inhibitor titrations of photophosphory la- tion are consistent with delocalized coupling, Biochim Biophys. Acta 807:300.CrossRefGoogle Scholar
  11. Felix, H., 1982, Permeabilized cells, Anal. Biochem.. 120:211.PubMedCrossRefGoogle Scholar
  12. Ferguson, S J., 1985, Fully delocalized chemiosmotic or localized proton flow pathways in energy coupling? A scrutiny of experimental evidence, Biochim. Biophys. Acta, 811:47.Google Scholar
  13. Ferguson, S J. and Sorgato, M. C., 1982, Proton electrochemical gradients and energy transduction processes Ann. Rev. Biochem., 51:185.PubMedCrossRefGoogle Scholar
  14. Fischer, F., Zillig, W., Setter, K. O. and Schreiber, G., 1983, Chemiolithotrophic metabolism of anaerobic extremely thermophilic archaebacteria, Nature, 301:511.PubMedCrossRefGoogle Scholar
  15. Friedrich, P., 1984, “Supramolecular Enzyme Organization,” Pergamon Press, Oxford.Google Scholar
  16. Froehlich, E and Kremer, F., eds., “Coherent Excitations in Biological Systems,” Springer-Verlag, Heidelberg.Google Scholar
  17. Garden, R. W., 1984, “Modern Logic and Quantum Mechanics,” Adam Hilger, Bristol.Google Scholar
  18. Gorringe, D. M. and Moses, V., 1980, Organization of the glycolytic enzymes in Escherichia coli, Int. J. Biol. Macromol.. 2:161.CrossRefGoogle Scholar
  19. Groen, A. K., van der Meer, R., Westerhoff, H. V., Wanders, R. J. A., Akerboom, T. P. M. and Tager, J. M., 1982a, Control of metabolic fluxes, in: “Metabolic Compartmentation”, H. Sies, ed., Academic Press, New York.Google Scholar
  20. Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., van der Meer, R. and Tager, J. M., 1982b, Quantification of the contribution of various steps to the control of mitochondrial respiration, J Biol. Chem., 257:2754.Google Scholar
  21. Guffanti, A. A., Bornstein, R F. and Krulwich, T. A., 1981, Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus. Biochim. Biophys Acta, 635:619.PubMedCrossRefGoogle Scholar
  22. Hangarter, R. P. and Good, N. E., 1982, Energy threshold for ATP synthesis in chloroplasts, Biochim. Biophys. Acta, 681:397.CrossRefGoogle Scholar
  23. Harris, C. M. and Kell, D. B, 1985, On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 2. Experiments with microbial cells, protoplasts and membrane vesicles, Eur. Biophys. J., in press.Google Scholar
  24. Heinrich, R. and Rapoport, T. A., 1974, A linear steady-state treatment of enzymatic chains. General properties, control and effector strength, Eur J. Biochem., 42:89.PubMedCrossRefGoogle Scholar
  25. Hess, B., 1983, Non-equilibrium dynamics of biochemical processes, Hoppe- Sevler’s Z. Phvsiol. Chem. 364:1.CrossRefGoogle Scholar
  26. Hess, B., Goldbeter, A. and Lefever, R., 1978, Temporal, spatial and functional order in regulated biochemical and cellular systems, Adv. Chem. Phys., 38:363.CrossRefGoogle Scholar
  27. Hess, B., Kuschmitz, D. and Markus, M., 1984, Dynamic coupling and the time-patterns of glycolysis, JLa: “Dynamics of Biochemical Systems”, J. Ricard and A. Cornish-Bowden, eds., Plenum Press, New York.Google Scholar
  28. Hitchens, G. D. and Kell, D.&, 1982a, On the extent of localization of the energized membrane state in chromatophores of Rhodopseudomonas capsulata N22, Biochem. J., 206:351.Google Scholar
  29. Hitchens, G. D. and Kell, D. B, 1982b, Localized energy coupling during photo phosphorylation by chromatophores of Rhodopseudomonas capsulata N22, Biosci. , J, 2:743.CrossRefGoogle Scholar
  30. Hitchens, G. D. and Kell, D.B, 1983a, Uncouplers can shuttle between localized energy coupling sites during photo phosphorylation by chromatophores of Rhodopseudomonas capsulata N22, P Biochem. J 212:25.Google Scholar
  31. Hitchens, G. D. and Kell, D. B., 1983b, On the functional unit of energy coupling in photophosphorylation by bacterial chromatophore, Biochim. Biophys, Acta, 723:308.CrossRefGoogle Scholar
  32. Hitchens, G D., and Kell, D. B., 1984, On the effects of thiocyanate and venturicidin on respiration-driven proton translocation in Paracoccus denitrificans Biochim. Biophys. Acta 766:222.Google Scholar
  33. Jackson, J. B, Venturoli, G.,, Baccarini-Melandri, A. and Melandri, B. A., 1981, Photosynthetic control and estimation of the optimal ATP: electron stoichiometry during flush activation of chromatophores from Rhodopgeudompnas capsulata, Biochim, Biophys Acta, 636:1.CrossRefGoogle Scholar
  34. Kacser, H. and Burns, J. A. , 1973 , The control of flux, Symp. Soc. EXP. Biol., 27:65.Google Scholar
  35. Keleti, T., 1984, Channelling in enzyme complexes, in: “Dynamics of Biochemical Systems”, J. Ricard and A. Cornish-Bowden, eds, Plenum Press, New York.Google Scholar
  36. Kell, D. B., 1979, On the functional proton current pathway of electron- transport phosphorylation. An electro die view, Biochim. Biophys. Acta, 549:55.PubMedGoogle Scholar
  37. Kell, D. B., 1984, Diffusion of protein complexes in prokaryotic membranes: fast, free, random or directed?, Trends Biochem. Sci 9:86.CrossRefGoogle Scholar
  38. Kell, D. B., 1986, Localized protonic coupling: overview and critical evaluation of experimental techniques, Meth. Enzvmol., in press.Google Scholar
  39. Kell, D. B, Clarke, D. J. and Morris, J. G., 1981, On proton-coupled information transfer along the surface of biological membranes and the mode of action of certain colicins, FEMS Microbiol. Lett. 11:1.CrossRefGoogle Scholar
  40. Kell, D. B and Harris, C. M., 1985, On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. I. Theory and overview, Eur. Biophys. J, in press.Google Scholar
  41. Kell, D. B and Hitchens, G. D., 1982, Proton-coupled energy transduction by biological membranes. Principles, pathways and practice, Faradav Discuss. chem. Soc., 74:377.Google Scholar
  42. Kell, D. B and Hitchens, G. D., 1983, Coherent properties of the membranous systems of eleetron-transport phosphorylation, in: “Coherent Excitations in Biological Systems”, H Fröhlich and F. Kremer, eds., Springer-Verlag, Heidelberg.Google Scholar
  43. Kell, D. B., John, P. and Ferguson, S. J., 1978, On the current: voltage relationships of energy coupling membranes: phosphorylating membrane vesicles from Paracocous denitrificans, Biochem Soc. Trans., 6:1292.PubMedGoogle Scholar
  44. Kell, D. B. and Morris, J. G., 1981, Proton-coupled membrane energy transduction: pathways, mechanisms and control, in: “Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria”, F. Palmieri, E. Quaglierello, N. Siliprandi and E.C. Slater, eds., Elsevier/North Holland, Amsterdam.Google Scholar
  45. Kell, D. B. and Westerhoff, H. V., 1985, Catalytic facilitation and membrane bioenergetics, in , “Organized Multienzyme Systems: Catalytic Properties”, G. R. Welch, ed., Academic Press, New YorkGoogle Scholar
  46. Kotze, J. P., 1968, 1-phosphofructokinase, a new glycolytic enzyme from Clostridium pasteurianum W5 S. Afr. J. Sci.. 11:349.Google Scholar
  47. Karsinskaya, I P., Marshansky, V. N., Dragunova, S. F. and Yaguzhinsky, L. S., 1984, Relationships of respiratory chain and ATP-synthetase in energized mitochondria, FEBS Lett 167:176.CrossRefGoogle Scholar
  48. Mackey, B M. and Morris, J. G., 1974, Isolation of a mutant strain of Clostridium pasteurianum defective in granulose degradation, FEBS Lett., 48:64.PubMedCrossRefGoogle Scholar
  49. Maloney, P. C., 1982, Energy coupling to ATP synthesis by the proton- translocating ATPase, J. Membr. Biol., 67:1.PubMedCrossRefGoogle Scholar
  50. Masters, C. J., 1981, Interactions between soluble enzymes and subcellular structure CRC Critical Rev. Biochem. 11:105.CrossRefGoogle Scholar
  51. Mclnerney, M. J., Bryant, M. P., Hespell, R B. and Costerton, J. W., 1981, Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Env. Microbiol. 41:1029.Google Scholar
  52. Millat, D. G., Griffiths-Smith, K., Algar, E. and Scopes, R.K., 1982, Activity and stability of glycolytic enzymes in the presence of ethanol, Biotechnol. Lett, 4:601.CrossRefGoogle Scholar
  53. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev.41:445.PubMedCrossRefGoogle Scholar
  54. Mitchell, P., 1968, “Chemiosmotic Coupling and Energy Transduction”, Glynn Research Ltd., Bodmin.Google Scholar
  55. Mitchell, W. J. and Booth, L R., 1984, Characterization of the Clostridium pasteurianum phosphotransferase system, J. Gen. Microbiol., 130:2193.Google Scholar
  56. Mowbray, J. and Moses, V., 1976, The tentative identification in Escherichia coli of a multienzyme complex with glycolytic activity, Eur. J. Biochem, 66:25. PubMedCrossRefGoogle Scholar
  57. Nagodawithana, T. W., Whitt, J. T. and Cutaia, A. J., 1977, Study of the feedback effect of ethanol on selected enzymes of the glycolytic pathway, J. Am. Soc. Brewing Chem, 35:179.Google Scholar
  58. Nicholls, D G., 1982, “Bioenergetics”, Academic Press, London.Google Scholar
  59. O’Shea, P.S. and Thelen, M., 1984, On the logic of the application of double-inhibit or titrations for the elucidation of the mechanism of energy coupling, FEBS Lett 176:79.PubMedCrossRefGoogle Scholar
  60. Ottaway, J. H. and Mcwbray, J., 1977, The role of compartmentation in the control of glycolysis, Curr. Top. Cell. Reg. 12:107.Google Scholar
  61. Parsonage, D., 1984, Ph.D. Thesis, University of Birmingham.Google Scholar
  62. Parsonage, D. and Ferguson, S.J., 1982, Titration of ATP synthase activity with an inhibitor as a function of the rate of generation of protormotive force: implications for the mechanism of ATP synthesis, Biochem. Soc. Trans., 10:257.Google Scholar
  63. Primas, H., 1981, “Chemistry, Quantum Mechanics and Reductionism”, Springer-Verlag, Heidelberg.Google Scholar
  64. Reddy, G. P. V. and Pardee, A. B., 1983, Inhibitor evidence for allosteric interaction in the replitase multienzyme complex, Nature, 304:86 and 658.CrossRefGoogle Scholar
  65. Schlenk, F., 1985, Early research on fermentation - a story of missed opportunities, Trends Biochem. Sci, 10(b):252.CrossRefGoogle Scholar
  66. Schmidt, G. and Graeber, P., 1985, The rate of ATP synthesis by reconstituted CF0F1 liposomes, Biochim. Biophys. Acta. 808:46.CrossRefGoogle Scholar
  67. Serrano, R., Ganceso, J. M. and Ganceso, C., 1973, Assay of yeast enzymes in situ, Eur. J. Biochem. 34:479.PubMedCrossRefGoogle Scholar
  68. Smith, D. J., Stokes, B. O. and Boyer, P. D., 1976, Probes of initial phosphorylation events in ATP synthesis by chloroplasts, J. Biol. Chem 251:4165.PubMedGoogle Scholar
  69. Somogyi, B, Welch, G. R. and Damjanovich, S, 1984, The dynamic basis of energy transduction in enzymes, Biochim. Biophys. Acta, 768:81.Google Scholar
  70. Sorgato, M. C., Branca, D. and Ferguson, S. J., 1980, The rate of ATP synthesis by submitochondrial particles can be independent of the protonmotive force, Biochem. J.. 188:945.PubMedGoogle Scholar
  71. Stucki, J. W., 1978, Stability analysis of biochemical systems. A practical guide, Progr. Biophys. Mol. Biol.. 33:99.CrossRefGoogle Scholar
  72. Tedeschi, H, 1980, The mitochondrial membrane potential, Biol. Rev., 55:171.PubMedCrossRefGoogle Scholar
  73. Thauer, R. K., Jungermann, K. and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev., 41:100.PubMedGoogle Scholar
  74. Thauer, R. K., and Morris, J. G., 1984, Metabolism of chemotrophic anaerobes: old views and new aspects, Symp. Soc. Gen. Microbiol., 36:123.Google Scholar
  75. Thayer, W. S. and Hinkle, P. O., 1975, Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles, J. Biol. Chem., 250:5336.PubMedGoogle Scholar
  76. Uyeda, K. and Kurooka, S, 1970, Crystallization and properties of phosphofructokinase from Clostridium pastsurianwn, J. Biol. Chem, 245:3315.PubMedGoogle Scholar
  77. Venturoli, G. and Melandri, B A., 1982, The localized coupling of bacterial photophosphorylation, Biochim. Biophys. Acta, 680:8.CrossRefGoogle Scholar
  78. Welch, G. R., 1977, On the role of organized multienzyme systems in cellular metabolism: a general synthesis, Progr. Biophys. Mol. Biol., 32:103.CrossRefGoogle Scholar
  79. Welch, G. R. and Kell, D. B, 1986, Not just catalysta Molecular machines in bioenergetics, in: “The Fluctuating Enzyme, ” G.R. Welch, ed., Wiley, Chichester.Google Scholar
  80. Westerhoff, H V. and Chen, Y., 1985, Stochastic free energy transduction, Proc. Natl. Acad. Sci.. 82:3222.PubMedCrossRefGoogle Scholar
  81. Westerhoff, H V., Colen, A-M., and van Dam, K., 1983a, Metabolic control by pump slippage and proton leakage in ‘delocalized’ and more localized chemiosmotic energy-coupling schemes, Biochem. Soc. Trans., 11:81.Google Scholar
  82. Westerhoff, H. V., Helgerson, S. L., Theg, S. M., van Kooten, O., Wikstrom, M., Skulachev, V. P. and Dancshazy, Zs., 1983b, the present state of the chemiosmotic coupling theory, Acta Biochim. Biophys. Acad. Sci. Hung., 18:125.Google Scholar
  83. Westerhoff, H. V., Groen, A. K. and Wanders, R. J. A., 1984a, Modern theories of metabolic control and their applications, Biosci. Rep., 4:1.CrossRefGoogle Scholar
  84. Westerhoff, H. V., Lolkema, J. S, Otto, R and Hellingwerf, K.J., 1982, Thermodynamics of growth, Biochim. Biophys. Acta, 683:181.PubMedGoogle Scholar
  85. Westerhoff, H. V. and Kell, D. B, 1985, A control theoretical analysis of inhibitor titration assays of metabolic channelling, Comments Mol. Cell Biophys., in press.Google Scholar
  86. Westerhoff, H. V., Melandri, B A., Venturoli, G., Azzone, G. F. and Kell, D. B, 1984b, A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units, Biochim. Biophys Acta, 768:257.Google Scholar
  87. Wheeler, J. A. and Zurek, W. H., 1983, “Quantum Theory and Measurement,” Princeton University Press, PrincetonGoogle Scholar
  88. Wolf, F. A, 1981, “Taking the Quantum Leap,” Harper and Row, San Francisco.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Douglas B. Kell
    • 1
  • Robert P. Walter
    • 1
  1. 1.Department of Botany and MicrobiologyUniversity College of WalesAberystwyth, DyfedUK

Personalised recommendations