Interactions of Mitochondrial Matrix Enzymes with Mitochondrial Inner Membranes

  • Reginald L. Tyiska
  • James S. Williams
  • Lynn G. Brent
  • Alan P. Hudson
  • Barbara J. Clark
  • Jack B. RobinsonJr.
  • Paul A. Srere
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 127)

Abstract

We have shown previously that citrate synthase (EC 4.1.3.7), mitochondrial malate dehydrogenase (EC 1.1.1.37), and fumarase (EC 4.2.1.2) bind to the matrix surface of the inner mitochondrial membrane (D’Souza and Srere, 1983). These experiments, along with others, were taken as evidence to support a hypothesis which proposes that there is an organization of Krebs TCA cycle enzymes with their metabolically sequential neighbors and with protein components of the inner membrane (Srere, 1985). The three enzymes studied were selected because of their availability and their stability. Since succinate dehydrogenase (EC 1.3.99.1) and α-ketoglutarate dehydrogenase complex (EC 2.3.1.61, 1.6.4.3, 1.2.4.1) are already known to be tightly bound to the inner membrane, the only remaining Krebs TCA cycle enzymes to be studied were aconitase, (NAD+) isocitrate dehydrogenase (EC 1.1.1.41) and succinyl CoA synthetase (EC 6.2.1.4). An inner-membrane associated (NAD+)isocitrate dehydrogenase has been isolated from potato mitochondria (Teszuka and Laties, 1983). We have also shown that certain mitochondrial dehydrogenases (malate,α-ketoglutarate, pyruvate and β-hydroxyacyl CoA) bind to Complex I, an inner membrane protein (Sumegi and Srere, 1984). We could not detect the binding of (NAD+)isocitrate dehydrogenase to Complex I.

Keywords

Lithium Citrate Glycol Adenosine Pyruvate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsley, M.W., Hensley, P. and Butow, R. A., 1984, Expression of GC Clusters in the yeast mitochondrial Var 1 gene, J. Biol. Chem, 259:8422.Google Scholar
  2. Beeckmans, S. and Kanarek L., 1981, Demonstrations of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle, Eur. J. Biochem.. 117:527.PubMedCrossRefGoogle Scholar
  3. Cha, S., 1969 Succinate thiokinase from pig heart, Methods Enzymol. 13:62.CrossRefGoogle Scholar
  4. CI eland, W.W., Thompson, V.W. and Barden, R. E., 1969 Isocitrate dehydrogenase (TPN-Specific) from pig heart, Methods Enzymol.13:30.CrossRefGoogle Scholar
  5. Daum, G., Bohni, P.C. and Schatz, G., 1982, Import of proteins into mitochondria, J. Biol. Chem. 257:13028.PubMedGoogle Scholar
  6. D’Souza, S.F. and Srere, P.A., 1983, Binding of citrate synthase to mitochondrial inner membranes, J. Biol. Chem., 258:4706.PubMedGoogle Scholar
  7. Fansler, B. and Lowenstein, J.M., 1969, Aconitase from pig heart, Methods Enaymol., 13:26.CrossRefGoogle Scholar
  8. Hackenbrock, C.R. and Miller-Hammon, K., 1975, Cytochrome c oxidase in liver mitochondria, J. Biol. Chem. 250:9185.Google Scholar
  9. Halper, L.A. and Srere, P.A., 1979, Interaction between citrate synthase and mitochondrial malate dehydrogenase in the presence of polyethylene glycol, Arch Biochem, Biopys., 184:529.CrossRefGoogle Scholar
  10. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem 193:265.PubMedGoogle Scholar
  11. Matlib, M.A. and Srere, P.A., 1976, Oxidative properties of swollen rat liver mitochondria, Arch Biochem. Biophys., 174:705.PubMedCrossRefGoogle Scholar
  12. Moore, G.E., Gadol, S.M., Robinson, Jr., J.B. and Srere, P.A., 1984, Binding of citrate synthase and malate dehydrogenase to mitochondrial inner membranes: tissue distribution and metabolite effects, Biochem. Biophys. Res. Commun, 121:612.PubMedCrossRefGoogle Scholar
  13. Penefsky, H.J., 1977, Reversible Binding of Pi by beef heart mitochonrdrial adenosine triphosphate, J. Biol. Chem., 252:2891.PubMedGoogle Scholar
  14. Plant, G. W. E., 1969, Isocitrate dehydrogenase (DPN-Specific) from pig heart, Methods Enzymol., 13:34.CrossRefGoogle Scholar
  15. Porpaczy, Z., Sumegi, B. and Alkonyi, L, 1983, Association between the alpha-ketoglutarate dehydrogenase complex and succinate thiokinase, Biochem. Biophys. Acta, 749:172.PubMedCrossRefGoogle Scholar
  16. Robinson, Jr., J. B. and Srere, P.A., 1985a, Organization of Krebs tricarboxylic acid cycle enzymes, Biochem. Medicine. 33:149.CrossRefGoogle Scholar
  17. Robinson, Jr., J.B. and Srere, P.A., 1985b, Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria, J . Biol. Chem., 260:10800.PubMedGoogle Scholar
  18. Schnaitman, C. and Greenawalt, J.W., 1968, Enzymatic properties of the inner and outer membranes of rat liver mitochondria, J. Cell Biol., 38:158.PubMedCrossRefGoogle Scholar
  19. Simon, E.J. and Shemin, D., 1953, Synthesis of thiol esters, J. Amer. Chem, Soc., 75:2520.CrossRefGoogle Scholar
  20. Srere, P.A., 1985, in: “Organized Multienzyme Systems,” G. R. Welch, ed., Academic Press, New York.Google Scholar
  21. Srere, P.A., Brazil, H. and Gonen, L., 1963, The citrate condensing enzyme of pigeon breast muscle and moth flight muscle, Acta Chem. Scadn., 17: S129.CrossRefGoogle Scholar
  22. Sumegi, B. and Srere, P. A., 1984, Complex I binds several mitochondrial NAD-coupled dehydrogenases, J. Biol. Chem., 259:15040.PubMedGoogle Scholar
  23. Teszuka, T. and La ties, G.G., 1983, Studies on potato isocitrate dehydrogenase, Plant Physiol., 72:959CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Reginald L. Tyiska
    • 1
    • 2
  • James S. Williams
    • 1
    • 2
  • Lynn G. Brent
    • 1
    • 2
  • Alan P. Hudson
    • 1
    • 2
  • Barbara J. Clark
    • 1
    • 2
  • Jack B. RobinsonJr.
    • 1
    • 2
  • Paul A. Srere
    • 1
    • 2
  1. 1.Pre-Clinical Science UnitVeterans Administration Medical CenterDallasUSA
  2. 2.Biochemistry DepartmentUniversity of Texas Health Science CenterDallasUSA

Personalised recommendations