Proton NMR Studies of Protein Dynamics and Folding: Applications of Magnetization Transfer NMR

  • Christopher M. Dobson
  • Philip A. Evans


When a protein exists at equilibrium in more than one conformational state it may be possible to observe separately in the NMR spectrum resonances corresponding to the different states. Provided that interconversion between these states occurs at suitable rates, magnetization transfer techniques may be used to detect it, and in favorable cases to obtain rate constants for specific conformational transitions. Results of one- and two-dimensional 1H NMR experiments with lysozyme and staphylococcal nuclease are used to illustrate the potentials of such an approach to studying the dynamics and folding of proteins.


Magnetization Transfer Folding Pathway Staphylococcal Nuclease Minor Resonance Obtain Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Jardetzky and G.C.K. Roberts, NMR in Molecular Biology, Academic Press, New York (1981).Google Scholar
  2. 2.
    J.H. Noggle and R.E. Schirmer, The Nuclear Overhauser Effect, Academic Press, New York (1971).Google Scholar
  3. 3.
    A. Bax, Two Dimensional NMR in Liquids, Reidei, London (1982).Google Scholar
  4. 4.
    V.F. Bystrov, Prog. NMR Spectrosc., 10, 41 (1976).CrossRefGoogle Scholar
  5. 5.
    I.D. Campbell, C.M. Dobson and R.J.P. Williams, Biochem. J., 231, 1 (1985).PubMedGoogle Scholar
  6. 6.
    R. Kaptein, E.R.P. Zuiderweg, R.M. Scheek, R. Boelans and W.F. van Gunsteren, J. Mol. Biol., 182, 179 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    M.P. Williamson, T.F. Havel and K. Wuthrich, J. Mol. Biol., 182, 295 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Brunger, G.M. Clore, A.M. Gronenborn and M. Karplus, Proc. Natl. Acad. Sci. USA, 83, 3801 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    F.M. Poulsen, J.C. Hoch and C.M. Dobson, Biochemistry, 19, 2597 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    G. Wagner, Q. Rev. Biophys., 16, 1 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    G.R. Moore, M.N. Robinson, G. Williams and R.J.P. Williams, J. Mol. Biol., 183, 429 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Porter, M. O’Connor and J. Whelan (eds.), Ciba Found. Symp., 93, 1 (1983).Google Scholar
  13. 13.
    J.A. McCammon and M. Karplus, Acc. of Chem. Res., 16, 187 (1983).CrossRefGoogle Scholar
  14. 14.
    C.M. Dobson and M. Karplus, Methods Enzymol., in press (1986).Google Scholar
  15. 15.
    C.M. Dobson in “Structure and Dynamics: Nucleic Acids and Proteins,” E. Clementi and R.H. Sarma, eds., Adenine Press, New York, p. 451 (1983).Google Scholar
  16. 16.
    C.K. Woodward, I. Simon and E. Tuchsen, Mol. Cell. Biochem., 48, 135 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    S.W. Englander and N.R. Kallenbach, Q. Rev. Biophys., 16, 521 (1981).CrossRefGoogle Scholar
  18. 18.
    C.M. Dobson, P.A. Evans and R.O. Fox, in “Structure and Motion: Membranes, Nucleic Acids and Proteins,” E. Clementi and R.H. Sarma, eds., Adenine Press, New York, p. 265 (1985).Google Scholar
  19. 19.
    I.D. Campbell, C.M. Dobson, R.G. Ratcliffe and R.J.P. Williams, J. Magn. Reson., 29, 397 (1978).Google Scholar
  20. 20.
    I.D. Campbell, C.M. Dobson, G.R. Moore, S.J. Perkins and R.J.P. Williams, FEBS Lett., 70, 96 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    A.G. Redfield and R.J. Gupta, Cold Spring Harbor Symp. Quant. Biol., 36, 405 (1971).CrossRefGoogle Scholar
  22. 22.
    J. Boyd, G.R. Moore and G. Williams, J. Magn. Reson., 58, 511 (1984).Google Scholar
  23. 23.
    M. Delepierre, C.M. Dobson, M.A. Howarth and F.M. Poulsen, Eur. J. Biochem., 145, 389 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    C.M. Dobson and C. Redfield, to be published.Google Scholar
  25. 25.
    R.E. Wedin, M. Delepierre, C.M. Dobson and F.M. Poulsen, Biochemistry, 21, 1098 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    C.M. Dobson and P.A. Evans, Biochemistry, 23, 4267 (1984).CrossRefGoogle Scholar
  27. 27.
    C.M. Dobson, P.A. Evans and K.L. Williamson, FEBS Lett., 168, 331 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    C.B. Anfinsen, Science, 181, 223 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    R.O. Fox, P.A. Evans and C.M. Dobson, Nature, 320, 6058 (1986).Google Scholar
  30. 30.
    C.M. Dobson, P.A. Evans and R.O. Fox, to be published.Google Scholar
  31. 31.
    K.H. Cook, F.X. Schmid and R.L. Baldwin, Proc. Natl. Acad. Sci. USA, 76, 6157 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Christopher M. Dobson
    • 1
  • Philip A. Evans
    • 1
  1. 1.Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations