Abstract

Dynamics of macromolecules of biological interest began in 1977 with the publication of a paper on the simulation of a small protein, the bovine pancreatic trypsin inhibitor.1 Although the trypsin inhibitor is rather uninteresting from a dynamical viewpoint — its function is to bind to trypsin — experimental and theoretical studies of this model system — the “hydrogen atom” of protein dynamics — served to initiate explorations in this field.

Keywords

Phosphorus Anisotropy Argon Catalysis Amide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. McCammon, B.R. Gelin, and M. Karplus, Nature, 267, 585 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    R.N. Porter, Ann. Rev. Phys. Chem., 25, 371 (1974).CrossRefGoogle Scholar
  3. 3.
    R.B. Walker and J.C. Light, Ann. Rev. Phys. Chem., 31, 401 (1980).CrossRefGoogle Scholar
  4. 4.
    G.C. Schatz and A. Kuppermann, J. Chem. Phys., 62, 2502 (1980).Google Scholar
  5. 5.
    B.J. Alder and T.E. Wainright, J. Chem. Phys., 31, 459 (1959).CrossRefGoogle Scholar
  6. 6.
    A. Rahman, Phys. Rev., A136, 405 (1964).CrossRefGoogle Scholar
  7. 7.
    F.H. Stillinger and A. Rahman, J. Chem. Phys., 60, 1545 (1974).CrossRefGoogle Scholar
  8. 8.
    W.W. Wood and J.J. Erpenbeck, Ann. Rev. Phys. Chem., 27, 319 (1976).CrossRefGoogle Scholar
  9. 9.
    W.G. Hoover, Ann. Rev. Phys. Chem., 34, 103 (1983).CrossRefGoogle Scholar
  10. 10.
    For early reviews of experimental and theoretical developments, see F.R.N. Gurd and J.M. Rothgeb, Adv. Prot. Chem., 33, 73 (1979); andCrossRefGoogle Scholar
  11. M. Karplus and J.A. McCammon, CRC Crit. Rev. Biochem., 9, 293 (1981).PubMedCrossRefGoogle Scholar
  12. 11.
    D.C. Phillips in Biomolecular Stereodynamics, ed. R.H. Sarma, Adenine, New York, 1981, p. 497.Google Scholar
  13. 12.
    M. Marquart, J. Deisendorfer, R. Huber, and W. Palm, J. Mol. Biol., 141, 369 (1980).PubMedCrossRefGoogle Scholar
  14. 13.
    U.H. Zucker and H. Schulz, Acta Cryst., A38, 563 (1982).Google Scholar
  15. 14.
    H. Hartmann, F. Parak, W. Steigemann, G.A. Petsko, D.R. Ponzi, and H. Frauenfelder, Proc. Natl. Acad. Sci. USA, 79, 4967 (1982).PubMedCrossRefGoogle Scholar
  16. 15.
    G.A. Petsko and D. Ringe, Ann. Rev. Biophys. & Bioeng., 13, 331 (1984).CrossRefGoogle Scholar
  17. 16.
    J. Kuriyan, G.A. Petsko, R.M. Levy, and M. Karplus, J. Mol. Biol. (in press).Google Scholar
  18. 17.
    M. Karplus and J.A. McCammon, Ann. Rev. Biochem., 52, 263 (1983).PubMedCrossRefGoogle Scholar
  19. 18.
    R.M. Levy, R.P. Sheridan, J.W. Keepers, G.S. Dubey, S. Swaminathan, and M. Karplus, Biophys. J., 48, 509 (1985).PubMedCrossRefGoogle Scholar
  20. 19.
    J. Kuriyan, G.A. Petsko, and M. Karplus, J. Mol. Biol. (in press).Google Scholar
  21. 20.
    S.E.V. Phillips, J. Mol. Biol., 142, 531 (1980).PubMedCrossRefGoogle Scholar
  22. 21.
    J.H. Konnert and W.A. Hendrickson, Acta Cryst., A36, 344 (1980).Google Scholar
  23. 22.
    I. Glover, I. Haneef, J. Pitts, S. Wood, D. Moss, I. Tickle, and T. Blundell, Biopolymers, 22, 293 (1983).PubMedCrossRefGoogle Scholar
  24. 23.
    P.J. Artymiuk, C.C.F. Blake, D.E.P. Grace, S.J. Oatley, D.C. Phillips, and N.J.E. Sternberg, Nature, 280, 563 (1979).PubMedCrossRefGoogle Scholar
  25. 24.
    H. Yu, M. Karplus, and W.A. Hendrickson, Acta Cryst., B41, 191 (1985).Google Scholar
  26. 25.
    I.D. Campbell, C.M. Dobson, and R.J.P. Williams, Adv. Chem. Phys., 39, 55 (1978).CrossRefGoogle Scholar
  27. 26.
    I.D. Campbell, C.M. Dobson, G.R. Moore, S.J. Perkins, and R.J.P. Williams, FEBS Lett., 70, 96 (1976).PubMedCrossRefGoogle Scholar
  28. 27.
    G. Wagner, A. DeMarco, and K. Wuthrich, Biophys. Struct. Mech., 2, 139 (1976).PubMedCrossRefGoogle Scholar
  29. 28.
    J.H. Noggle and R.E. Schirmer, The Nuclear Overhauser Effect, Academic Press, New York, 1971.Google Scholar
  30. 29.
    G. Wagner and K. Wuthrich, J. Mol. Biol., 160, 343 (1982).PubMedCrossRefGoogle Scholar
  31. 30.
    B. Honig, B. Hudson, B.D. Sykes, and M. Karplus, Proc. Natl. Acad. Sci. USA, 68, 1289 (1971).PubMedCrossRefGoogle Scholar
  32. 31.
    E.T. Olejniczak, C.M. Dobson, M. Karplus, and R.M. Levy, J. Am. Chem. Soc., 106, 1923 (1984).CrossRefGoogle Scholar
  33. 32.
    I. Solomon, Phys. Rev., 99, 559 (1955).CrossRefGoogle Scholar
  34. 33.
    R.M. Levy, M. Karplus, and P.G. Wolynes, J. Am. Chem. Soc., 103, 5998 (1981).CrossRefGoogle Scholar
  35. 34.
    T. Ichiye, B. Olafson, S. Swaminathan, and M. Karplus, Biopolymers (in press).Google Scholar
  36. 35.
    E.T. Olejniczak, F.M. Poulsen, and D.M. Dobson, J. Am. Chem. Soc., 103, 6574 (1981).CrossRefGoogle Scholar
  37. 36.
    F.M. Poulsen, J.C. Hoch, and C.M. Dobson, Biochemistry, 19, 2597 (1980).PubMedCrossRefGoogle Scholar
  38. 37.
    G.M. Clore, A.M. Gronenborn, A.T. Brunger, and M. Karplus, J. Mol. Biol., 186, 435 (1985).PubMedCrossRefGoogle Scholar
  39. 38.
    B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem., 4, 187 (1983).CrossRefGoogle Scholar
  40. 39.
    A.T. Brunger, G.M. Clore, A.M. Gronenborn, and M. Karplus, Proc. Natl. Acad. Sci. USA, 83, 380 (1986).CrossRefGoogle Scholar
  41. 40.
    D. Bashford, D.L. Weaver, and M. Karplus, J. Biomol. Struct. Dyn., 1, 1243 (1984).PubMedCrossRefGoogle Scholar
  42. 41.
    C.L. Brooks and M. Karplus, J. Chem. Phys., 79, 6312 (1983).CrossRefGoogle Scholar
  43. 42.
    A. Brunger, C.L. Brooks, and M. Karplus, Chem. Phys. Lett., 105, 495 (1984).CrossRefGoogle Scholar
  44. 43.
    C.L. Brooks, A. Brunger, and M. Karplus, Biopolymers, 24, 843 (1985).PubMedCrossRefGoogle Scholar
  45. 44.
    W.A. Gilbert, A.L. Fink, and G.A. Petsko, Biochemistry (in press).Google Scholar
  46. 45.
    R.L. Campbell and G.A. Petsko, Biochemistry (in press).Google Scholar
  47. 46.
    F.H. Stillinger and A. Rahman, J. Chem. Phys., 60, 1545 (1974).CrossRefGoogle Scholar
  48. 47.
    J.B. Matthew and F.M. Richards, Biochemistry, 21, 4989 (1982).PubMedCrossRefGoogle Scholar
  49. 48.
    D.J. Desmeules and L.C. Allen, J. Chem. Phys., 72, 4731 (1980).CrossRefGoogle Scholar
  50. 49.
    P. Kebarle, Ann. Rev. Phys. Chem., 28, 445 (1977).CrossRefGoogle Scholar
  51. 50.
    A.R. Fersht, J.-P. Shi, J. Knill-Jones, D.M. Lowe, A.J. Wilkinson, D.M. Blowq, P. Brick, P. Carter, M.M.Y. Waye, and G. Winter, Nature (London), 314, 235 (1985).CrossRefGoogle Scholar
  52. 51.
    A. Wlodawer in Biological Macromolecules and Assemblies: Volume 2, Nucleic Acids and Interactive Proteins, eds., F.A. Jurnak and A. McPherson, Wiley, New York, 1985, p. 394.Google Scholar
  53. 52.
    P.S. Marfey, M. Uziel, and J. Little, J. Biol. Chem., 240, 3270 (1965).PubMedGoogle Scholar
  54. 53.
    P.C. Weber, F.R. Salemme, S.H. Lin, Y. Konishi, and H.A. Scheraga, J. Mol. Biol., 181, 453 (1985).PubMedCrossRefGoogle Scholar
  55. 54.
    C.C.F. Blake, W.C.A. Pulford, and P.J. Artymiuk, J. Mol. Biol., 167, 693 (1983).PubMedCrossRefGoogle Scholar
  56. 55.
    M.N.G. James and A.R. Sielecki, J. Mol. Biol., 163, 299 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Martin Karplus
    • 1
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations