Structures and Superstructures in Periodical Polynucleotides

  • P. DeSantis
  • Steven Morosetti
  • A. Palleschi
  • M. Savino


A renewed attention has been focused on the structural aspects of DNA in the last few years. Such revival of interest starting from the elucidation of the structure of some synthetic oligonucleotides is going beyond toward the understanding of the basic molecular mechanisms of control of genetic information, which are strictly correlated to the question how DNA structure depends on the sequence.1


Double Helix Helical Axis Pyrimidine Purine Sugar Pucker Polynucleotide Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cold Spring Harbor Symp. on Quant. Biol., Vol XLVII, Structures of DNA (1983).Google Scholar
  2. 2.
    S. Arnott and R. Chandrasekaran, “Fibrous polynucleotide duplexes have very polymorphic secondary structures,” in Biomolecular stereodynamics (ed. R.H. Sarma), Vol. I, Adenine Press, New York, 99 (1981).Google Scholar
  3. 3.
    F.M. Pohl and T. Iovin, Salt-induced cooperative conformational change of a synthetic DNA. Equilibrium and kinetic studies with poly (dG-dC), J. Mol. Biol., 67, 375 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    A.H.J. Wang, G.J. Quigley, F.J. Kolpak, J.L. Crawford, J.H. van Boom, G. van der Marel, and A. Rich, Molecular structure of a left-handed DNA fragment at atomic resolution, Nature, 282, 680 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    E.N. Trifonov, Sequence-dependent variations of B-DNA structure and protein-DNA recognition, in Cold Spring Harb. Symp. on Quant. Biol., Vol. XLVII, 271 (1983).CrossRefGoogle Scholar
  6. 6.
    J.C. Marini, S.D. Levene, D.M. Crothers and P.T. Englund, A bend helix in kinetoplast DNA, in Cold Spring Harb. Symp. on Quant. Biol., Vol. XLVII, 279 (1983).CrossRefGoogle Scholar
  7. 7.
    H.S. Koo, H.M. Wu, and D.M. Crothers, DNA bending at adenine, thymine tracts, Nature, 320, 501 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    P.J. Hagerman, Sequence-directed curvature of DNA, Nature, 321, 449 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    P. De Santis, S. Morosetti, A. Palleschi and M. Savino, Conformational and structural constraints in double-helical polynucleotides, Biopolymers, 20, 1707 (1981).CrossRefGoogle Scholar
  10. 10.
    P. De Santis, S. Morosetti, A. Palleschi and M. Savino, Conformational analysis of double-stranded B-type DNA structures, Biopolymers, 20, 1727 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Sundaralingam, Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleoside mono-di-tritetraphosphates, nucleic acids, and polynucleotides, Biopolymers, 7, 821 (1969).CrossRefGoogle Scholar
  12. 12.
    M. Behe and G. Felsenfeld, Effects of methylation on a synthetic polynucleotide: the B-Z transition in poly (dG-m5 dC), poly (dG-m5 dC), Proc. Natl. Acad. Sci. USA, 78, 1619 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    A.H.J. Wang, G.J. Quigley, F.J. Kolpak, G. van der Marel, J.H. Van Boom and A. Rich, Left-handed double helical DNA: variations in the backbone conformation, Science, 211, 171 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    H.R. Drew and R.E. Dickerson, Conformation and dynamics in a Z-DNA tetramer, J. Mol. Biol., 152, 723 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    J.L. Crawford, F.J. Kolpak, A.H.J. Wang, G.J. Quigley, J.H. van Boom, G. van der Marel and A. Rich, The tetramer d(CpGpCpG) crystallizes as a left-handed double helix, Proc. Natl. Acad. Sci. USA, 77, 4016 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Drew, T. Takano, S. Tanaka, K. Itakura and R.E. Dickerson, High-salt d(CpGpCpG), a left-handed Z′DNA double helix, Nature, 286, 567 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Fujii, A.H.J. Wang, G. van der Marel, J.H. Van Boom and A. Rich, Molecular structure of (m5dC-dG)3; the role of the methyl group on 5-methylcytosine in stabilizing Z-DNA (1982).Google Scholar
  18. 18.
    A.H.J. Wang, T. Hakoshima, G. van der Marel, J.H. Van Boom and A. Rich, AT base pairs are less stable than GC base pairs in Z-DNA: the crystal structure of d(m5CGTA m5CG), Cell, 37, 321 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    M.L. Kopka, A.V. Fratini, H.R. Drew and R.E. Dickerson, Ordered water structure around a B-DNA dodecamer. A quantitative study, J. Mol. Biol., 163, 129 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    A.G.W. Leslie, S. Arnott, R. Chandrasekaran and R.L. Ratliff, Polymorphism of DNA double helices, J. Mol. Biol., 143, 49 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    V.B. Zhurkin, Y.P. Lysov and V.J. Ivanov, Anisotropic flexibility of DNA and the nucleosomal structure, Nucleic Acids Res., 6, 1081 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    R.E. Dickerson, Base Sequence and Helix Structure Variation in B and A DNA, J. Mol. Biol., 166, 419 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    P.J. Hagerman, Evidence for the existence of stable curvature of DNA in solution, Proc. Natl. Acad. Sci. USA, 81, 4632 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Dieckmann and J.C. Wang, On the Sequence Determinants and Flexibility of the Kinetoplast DNA Fragment with Abnormal Gel Electrophoretic Mobilities, J. Mol. Biol., 186, 1 (1985).CrossRefGoogle Scholar
  25. 25.
    H.R. Drew and A.A. Travers, DNA Bending and its Relation to Nucleosome Positioning, J. Mol. Biol., 186, 773 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    E. Caffarelli, L. Leoni, B. Sampaolese and M. Savino, Persistence of cruciform structure and preferential location of nucleosome on some regions of pBR322 and ColEl DNAs, Eur. J. Biochem., 156, 335 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. DeSantis
    • 1
  • Steven Morosetti
    • 1
  • A. Palleschi
    • 1
  • M. Savino
    • 1
    • 2
  1. 1.Dipartimento di ChimicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Dipartimento di Genetica e Biologia Molecolare and Centro per lo Studio degli Acidi Nucleici del CNRUniversità di Roma “La Sapienza.”Italy

Personalised recommendations