Advertisement

Physicists Explore Human and Artificial Intelligence

  • J. Buhmann
  • R. Divko
  • H. Ritter
  • K. Schulten

Abstract

The foundation of modern brain theory1 is based on the epochal work of the physiologist Sherrington and the anatomist Cajal at the beginning of the twentieth century. Both established the modern view of neural networks as heterogeneous systems composed of single subunits, the neurons. They rejected the theory of Golgi and others that the brain is a continuous net of axons and neurons. Sherrington investigated the electrical firing of neurons and introduced the terminus “synapse” for the connection between the individual neurons. These ideas which drove away the animal ghosts of the continuum theory have been spectacularly confirmed half a century later by electron microscopy photographs of neurons and synapses.

Keywords

Synaptic Strength Excited Neuron Spike Rate Neuronal Group Brain Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Palm, A. Aertsen, Brain Theory, Springer, Berlin-Heidelberg, New York (1986)CrossRefGoogle Scholar
  2. H. Gardner, The Mind’s New Science, Basic Books, New York (1985).Google Scholar
  3. 2.
    C. von der Malsburg, Self-Organization of Orientation Sensitive Cells in the Striate Cortex, Kybernetik, 14, 85 (1973).PubMedCrossRefGoogle Scholar
  4. 3.
    L.N. Cooper, Proceedings of the Nobel Symposium on Collective Properties of Physical Systems, ed. Lundqvist, Academic, New York, p. 252 (1973).Google Scholar
  5. 4.
    T. Kohonen, Self-Organization and Associative Memory, Springer, Berlin-Heidelberg, New York, p. 128 (1984).Google Scholar
  6. 5.
    J.J. Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Natl. Acad. Sci. USA, 79, 2554 (1982).PubMedCrossRefGoogle Scholar
  7. 6.
    J.J. Hopfield, Neural Networks for Computing, American Institute of Physics Publication, in press.Google Scholar
  8. 7.
    J. Buhmann, and K. Schulten, Associative Recognition and Storage in a Model Network of Physiological Neurons, Biol. Cybern., 54, 319 (1986).PubMedCrossRefGoogle Scholar
  9. 8.
    C. von der Malsburg, The Correlation Theory of Brain Function, Internal Report 81/2, Dept. Neurobiologie, MPI f. Biophysikalische Chemie, Göttingen (1981).Google Scholar
  10. 9.
    M. Abeles, Local Cortical Circuits, Springer, Berlin-Heidelberg, New York (1982).CrossRefGoogle Scholar
  11. 10.
    T. Kohonen, Self-Organized Formation of Topologically Correct Feature Maps, Biol. Cybern., 43, 59 (1982).CrossRefGoogle Scholar
  12. 11.
    T. Kohonen, Analysis of a Simple Self-Organizing Process, Biol. Cybern., 44, 135 (1982).CrossRefGoogle Scholar
  13. 12.
    H. Ritter and K. Schulten, On the Stationary State of Kohonen’s Self-Organizing Sensory Mapping, Biol. Cybern., 54, 99 (1986).CrossRefGoogle Scholar
  14. 13.
    J. Fox, The Brain’s Dynamic Way of Keeping in Touch, Science, 225, 820 (1984).PubMedCrossRefGoogle Scholar
  15. 14.
    J.H. Kaas, M.M. Merzenich and H.P. Killackey, The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals, Ann. Rev. Neuroscience, 6, 325 (1983).CrossRefGoogle Scholar
  16. 15.
    E.R. Kandel and J.H. Schwartz, Principles of Neural Science, Elsevier, New York (1985).Google Scholar
  17. 16.
    B.E. Stein, H.P. Clamann and S.J. Goldberg, Superior Colliculus: Control of Eye Movements in Neonatal Kittens, Nature, ??, ?? (1980).Google Scholar
  18. 17.
    H. Ritter and K. Schulten, Topology Conserving Mappings for Learning Motor Tasks, Proceedings of the 1st Conference on Neural Networks and Computing, Utah, in press (1986).Google Scholar
  19. 18.
    H. Ritter and K. Schulten, Planning a Dynamic Trajectory as Path Finding in Phase Space, Wopplot Proceedings, Munich, submitted 1986.Google Scholar
  20. 19.
    S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by Simulated Annealing, Science, 220, 671 (1983).PubMedCrossRefGoogle Scholar
  21. 20.
    S. Geman and D. Geman, IEEE Tran. Pattern Anal. Machine Intell., Vol. PAMI-6, 721 (1984).CrossRefGoogle Scholar
  22. 21.
    P. Kienker, T.J. Sejnowski, G.E. Hinton and L.E. Schuhmacher, Separating Figure from Ground with a Parallel Network, in press (1986).Google Scholar
  23. 22.
    D. Marr, Vision, Freeman (1982).Google Scholar
  24. 23.
    B. Julesz, Foundations of Cyclopean Perception, Univ. Chicago Press (1971).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. Buhmann
    • 1
  • R. Divko
    • 1
  • H. Ritter
    • 1
  • K. Schulten
    • 1
    • 2
  1. 1.Physik-Department TechnischeUniversität MünchenGarchingGermany
  2. 2.Institute of Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations