Advertisement

Elasticity, Structure and Dynamics of Cell Plasma Membrane and Biological Functions

  • Enrico Sackmann
  • H. P. Duwe
  • K. Zeman
  • A. Zilker

Abstract

Cell plasma membranes can be considered as compound systems of three coupled layers: (1) the glycocalix, a thin macromolecular layer formed primarily by the large head groups of the glycoproteins and glycolipids, (2) the lipid/protein bilayer and (3) the cytoskeleton (a quasi-two-dimensional [gel-like] meshwork of filamentous proteins, spectrin in the case of erythrocytes), which is attached to the cytoplasmic leaflet of the bilayer and which mediates the coupling of the membrane to the meshwork of microfilaments and microtubily of the cell interior. The high flexibility of such compound membranes is manifested in pronounced (thermally excited) surface undulations of the cell envelopes.

Keywords

Surface Undulation Cell Plasma Membrane Shape Transformation Hydrophilic Chain Lateral Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Branton, C.M. Cohen and J. Tyler, Cell, 24, 24 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    S.B. Shohet and S.E. Lux, Hospital Practise, 19, 89 (1984).Google Scholar
  3. 3.
    C.W.M. Heast, Biochim. Biophys. Acta, 694, 331 (1982).Google Scholar
  4. 4.
    B.T._Stokke, A. Mikkelsen and A. Elgsaeter, Europ. Biophys. J., 13, 203 (1986). Ibid, 13, 219 (1986).CrossRefGoogle Scholar
  5. 5. a)
    P.G. de Gennes, J. de Physique, 37, 1445 (1976) andCrossRefGoogle Scholar
  6. b).
    S. Alexander, J. de Physique, 38, 983 (1971).CrossRefGoogle Scholar
  7. 6.
    M. Seigneuret and Ph. Devaux, Proc. Natl. Acad. Sci., 81, 3751 (1984).PubMedCrossRefGoogle Scholar
  8. 7.
    H.J. Kapitza and E. Sackmann, Biochim. Biophys. Acta, 595, 56 (1980).PubMedCrossRefGoogle Scholar
  9. 8.
    T.M. Jovin and W.L.C. Vaz in “Biomembranes, M.: Biological Transport,” Methods in Enzymology.Google Scholar
  10. 9.
    D. Golan and W. Veatch, Proc. Natl. Acad. Sci., 77, 2537 (1980).PubMedCrossRefGoogle Scholar
  11. 10.
    M.J. Saxton, Biophys. J., 9, 165 (1982).CrossRefGoogle Scholar
  12. 11.
    R.J. Cherry, E.A. Nigg and G.S. Beddard, Proc. Natl. Acad. Sci., 77, 5899 (1980).PubMedCrossRefGoogle Scholar
  13. 12.
    K. Fricke, R. Laxhuber, K. Wirthensohn and E. Sackmann, Europ. Biophys. J. (to appear 1986).Google Scholar
  14. 13.
    H. Engelhardt, H.P. Duwe and E. Sackmann, J. de Physique, 6, L395 (1985).Google Scholar
  15. 14.
    F. Brochard and J.F. Lennon, J. de Physique, 36, 1035 (1975).CrossRefGoogle Scholar
  16. 15.
    E. Sackmann, H.P. Duwe and H. Engelhardt, J. Chem. Soci, Faraday Discussion, 81, 000 (1986).Google Scholar
  17. 16.
    M. Bessis, “Living Blood Cells and Their Ultrastructure,” Springer Verlag, Heidelberg, 1973.Google Scholar
  18. 17. a)
    D.S. Johnston, S.A. Sanghem and D. Chapman, Biochim. Biophys. Acta, 602, 54 (1981), andGoogle Scholar
  19. b).
    B. Hupfer, H. Rinsdorf and H. Schupp, Makromol. Chemie, 182, 247 (1981).CrossRefGoogle Scholar
  20. 18.
    H. Gaub, H. Büschi, H. Ringsdorf and E. Sackmann, Biophys. J., 45, 725 (1984).PubMedCrossRefGoogle Scholar
  21. 19.
    E. Sackmann, P. Eggl, C. Fahn, H. Bader, H. Ringsdorf and M. Schollmeier, Ber. Bunsenges. Phys. Chem., 89, 1198 (1985).Google Scholar
  22. 20.
    E.A. Evans, Biophys. J., 14, 923 (1974).PubMedCrossRefGoogle Scholar
  23. 21.
    H.J. Deuling and W. Helfrich, Biophys. J., 16, 861 (1976).PubMedCrossRefGoogle Scholar
  24. 22.
    A.G. Petrov and I. Bivas, Progr. in Surface Science, Vol. 16, 389 (1984).CrossRefGoogle Scholar
  25. 23.
    S. Svetina and B. Zeks, Biomed. Biochem. Acta, 42, 86 (1983).Google Scholar
  26. 24.
    M.P. Sheetz and S.J. Singer, Proc. Natl. Acad. Sci. USA, 71, 4457 (1974).PubMedCrossRefGoogle Scholar
  27. 25.
    C. Mombers, J. de Gier, R.A. Demel and L.L.M. van Deenen, Biochim. Biophys. Acta, 603, 52 (1980).PubMedCrossRefGoogle Scholar
  28. 26.
    T. Tanaka, Phys. Rev. Letters, 40, 820 (1978).CrossRefGoogle Scholar
  29. 27.
    R.P. Rand and V.A. Parsegian, Can. J. Biochem., 62, 752 (1984).CrossRefGoogle Scholar
  30. 28.
    B. Alberts et al., “Molecular Biology of the Cell,” Garland Publishing Inc., New York/London.Google Scholar
  31. 29.
    W. Frey, J. Schneider, H. Ringsdorf and E. Sackmann, to be published.Google Scholar
  32. 30.
    J.P. Changeux and A. Danchin, Nature, Vol. 264 (1976).Google Scholar
  33. 31.
    M.H. Akabas, F.S. Cohen and A. Finkelstein, J. Cell Biol., 98, 1003 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Enrico Sackmann
    • 1
  • H. P. Duwe
    • 1
  • K. Zeman
    • 1
  • A. Zilker
    • 1
  1. 1.Physik Department (E 22, Biophysics Group)Technische Universität MünchenGarchingGermany

Personalised recommendations