Low Frequency Coherent Vibrations of DNA: The Role of the Hydration Shell and Phosphate-Phosphate Interactions

  • Steven M. Lindsay


The vibrational modes of DNA span a range from high frequency localized vibrations, through low frequency collective modes to over-damped Brownian fluctuations. Presumably the most important motions from a biological standpoint are the lowest frequency vibrations (involving the largest units) that are not overdamped by the viscous action of the hydration shell. I describe observations of low frequency collective vibrational modes of DNA which couple to the hydration shell. The dynamics of the hydration shell becomes important in a frequency “window” between the viscoelastic transition of the primary hydration shell (roughly 4 GHz.) and the viscoelastic transition of the secondary shell (roughly 80 GHz.). The role of coupled solvent — DNA dynamics in the A to B and B to Z transition is discussed in terms of the phosphate-phosphate interactions which probably dominate conformational stability. Excitations of coupled modes of the DNA-hydration shell system may also account for the resonant microwave absorption observed in restriction fragments and plasmids.


Double Helix Hydration Shell Microwave Absorption Acoustic Standing Wave Gigahertz Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.M. Lindsay, J. Powell, E.W. Prohofsky and K.V. Devi-Prasad, in “Structure and Motion: Membranes, Nucleic Acids and Proteins,” eds. E. Clementi, G. Corongiu, M.H. Sarma and R.H. Sarma, Adenine, New York, p. 531 (1985).Google Scholar
  2. 2.
    W.C. Kerr and A.R. Bishop, “The Dynamics of Structural Phase Transitions in Highly Anisotropic Systems,” preprint (1986).Google Scholar
  3. 3.
    B.H. Dorfman and L.L. Van Zandt, Biopolymers, 23, 2639 (1983).CrossRefGoogle Scholar
  4. 4.
    M. Kohli and L.L. Van Zandt, Biopolymers, 21, 1399 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    M.L. Swicord, G.S. Edwards, J.L. Sagripanti and C.C. Davis, Biopolymers, 22, 2513 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    G.S. Edwards, C.C. Davis, J.D. Saffer and M.L. Swicord, Phys. Rev. Lett., 53, 1284 (1984).CrossRefGoogle Scholar
  7. 7.
    S.M. Lindsay and J. Powell, in “Structure and Dynamics: Nucleic Acids and Proteins,” eds. E. Clementi and R.H. Sarma, Adenine, New York, p. 241 (1983).Google Scholar
  8. 8.
    C. DeMarco, S.M. Lindsay, M. Pokorny, J. Powell and A. Rupprecht, Biopolymers, 24, 2035 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    S.A. Lee, J. Powell, N.J. Tao, G. Lewen, S.M. Lindsay and A. Rupprecht, to be published.Google Scholar
  10. 10.
    N.J. Tao, S.M. Lindsay and A. Rupprecht, Biopolymers, in press (1986).Google Scholar
  11. 11.
    Y. Tominaga, M. Shida, K. Kubota, H. Urabe, Y. Nishimura and M. Tsuboi, J. Chem. Phys., 83, 5972 (1985).CrossRefGoogle Scholar
  12. 12.
    M. Falk, K.A. Hartman and R.C. Lord, J. Am. Chem. Soc., 84, 3843 (1962). In this same issue, see also the two papers immediately following that by Falk et al. CrossRefGoogle Scholar
  13. 13.
    M.L. Kopka, A.L. Fratini, H.R. Drew and R.E. Dickerson, J. Mol. Biol., 163, 129 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    E. Clementi and G. Corongiu, Biopolymers, 20, 351 and 2427 (1981)Google Scholar
  15. Biopolymers, 21, 763 (1982).PubMedCrossRefGoogle Scholar
  16. 15.
    D.M. Soumpasis, Proc. Nat. Acad. Sci. (USA), 81, 5116 (1984).CrossRefGoogle Scholar
  17. 16.
    D.M. Soumpasis, J. Wiechen and T.M. Jovin, “Relative Stabilities and Transitions of DNA Conformations in 1:1 Electrolytes: A Theoretical Study,” preprint (1985).Google Scholar
  18. 17.
    S.M. Lindsay, “Progress and Challenges in Biological and Synthetic Polymer Research,” eds. C. Kawabata and A.R. Bishop, Ohmska, Tokyo (1986).Google Scholar
  19. 18.
    The equilibration of Z-DNA is independent of concentration over six orders of magnitude — F.M. Pohl, A. Ranade and M. Stockburger, Biochim. Biophys. Acta, 335, 85 (1973).Google Scholar
  20. 19.
    This is an extension of an experiment first performed by Herbeck et al. — R. Herbeck, T.J. Yu and W.L. Peticolas, Biochemistry, 15, 2656 (1976).PubMedCrossRefGoogle Scholar
  21. 20.
    G. Lewen, S.M. Lindsay, N.J. Tao, T. Weidlich, R.J. Graham and A. Rupprecht, Biopolymers, 25, 765 (1986).PubMedCrossRefGoogle Scholar
  22. 21.
    B.N. Conner, C. Yoon, J.L. Dickerson and R.E. Dickerson, J. Mol. Biol., 174, 663 (1984).PubMedCrossRefGoogle Scholar
  23. 22.
    T. Weidlich, S.M. Lindsay and A. Rupprecht, “The Optical Properties of Li-and Na-DNA Films,” preprint (1986).Google Scholar
  24. 23.
    S.C. Harvey, Nucleic Acids Res., 11, 4867 (1983).PubMedCrossRefGoogle Scholar
  25. 24.
    W.K. Olson, A.R. Srivasan, N.L. Marky and V.N. Balaji, Cold Spring Harbor Symp. Quant. Biol., 47, 229 (1983).PubMedCrossRefGoogle Scholar
  26. 25.
    M.B. Hakim, S.M. Lindsay and J. Powell, Biopolymers, 23, 1185 (1984).PubMedCrossRefGoogle Scholar
  27. 26.
    A.C. Scott, Phys. Rev., A31, 3518 (1985).Google Scholar
  28. 27.
    A.C. Scott and J.H. Jensen, Physics Letters, 109A, 243 (1985).Google Scholar
  29. 28.
    L.L. Van Zandt, J. Biomol. Str. Dyns., in press (1986).Google Scholar
  30. 29.
    L.L. Van Zandt, “Why Structured Water Causes Sharp Absorption by DNA at Microwave Frequencies,” preprint (1986).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Steven M. Lindsay
    • 1
  1. 1.Physics DepartmentArizona State UniversityTempeUSA

Personalised recommendations